diver's behaviour and physical state

Cognitive Autonomous Diving Buddy

http://www.caddy-fp7.eu/

Key facts:

FP7-ICT Cognitive Robotics STREP with 7 partners EU contribution: €3,7 million, (FER €709,000)

36 months, starting 01/01/2014 Duration:

Coordinator: **UNIZG-FER**

What?

Set up symbiotic links between a human diver and a set of companion autonomous robots (underwater and surface).

How?

By developing a multicomponent, highly cognitive robotic system capable of learning, interpreting, and adapting to the diver's behaviour and physical state

Cognitive Autonomous Diving Buddy

Key facts:

FP7-ICT Cognitive Robotics STREP with 7 partners

What?

Set up symbiotic links between a human diver and a set of companion autonomous robots (underwater and surface).

How?

By developing a multicomponent, highly cognitive robotic system capable of learning, interpreting, and adapting to the diver's behaviour and physical state

Cognitive Autonomous Diving Buddy

Key facts:

FP7-ICT Cognitive Robotics STREP with 7 partners

- · cooperates with diver
- · guides the diver along predetermined transects allowing her/him to execute the most productive tasks

• enables precise navigation to the site via an optimal route

· cooperates with diver

• guides the diver along predetermined transects allowing her/him to execute the most productive tasks

· enables precise navigation to the site via an optimal route

- · close to the diver
- detect anomalies
- · promptly reports cmnd.

- interprets diver behaviour
- centre

- Interprets symbolic commands
- executes compliant tasks (photo s, videos, illumination)
- · Reports mission replanning

Goggles with LED array for diver guidance

Microprocessor and Attitude Unit

Acoustic modem and ranging device

New miniature modem/USBL to replace Micron

- · 100bps data rate
- more efficient protocols (1-2kbps by end 2014)
- USBL positioning integrated in all units

Tank tests

- USBL fix repeatability assessed (<< 1 deg).
- · Range repeatability <10cm.
- · ~1 fix per second

Recognition of hand gestures

Pose int

Challenges

- visibility deteriorates with distance
 low visibility in murky waters
 who is moving: diver or the buddy camera?

Sonar sensing

n Caska, Island of Pag, Croatia, May 2014

- Challengeslow quality datalow nar beam width

Stereo camera sensing

Challenges

- · low quality data
- · low nar beam width

- Challenges
 visibility deteriorates with distance

 - low visibility in murky waterswho is moving: diver or the buddy camera?

recognition of hand gestures diver pose estimation ego-motion compensation

- Challenges
 wireless transmission to the surface
 - · low bandwidth

You Tube

- Challenges
 wireless transmission to the surface
 - · low bandwidth

Trials in Caska Island Pag, Croatia May 2014

Trials in Y-40 pool Padova, Italy June 2014

Recognition of hand gestures

Pose int

Recognition of hand gestures

WP3
Understanding
the diver

Pose interpretation

Pose interpretation

