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 1 Outline of the deliverable 

 

This deliverable describes the navigation algorithms designed and implemented in the scope 
of the CADDY project. Two categories of filters were studied, on one hand resorting only to 
AHRS, range measurements and exchanged data, on the other hand taking advantage of all 
the common expensive sensors as USBL and DVL. 

 

 

2 Navigation filter using USBL and DVL measurements (IST) 

 

The system architecture for both surface and underwater vehicle can be seen in the diagram 
of Figure 2.1. 

 

Figure 2.1 - System architecture diagram 

Both the leader and the follower vehicles ran an Extended Kalman Filter (EKF) to 
independently estimate the positions and velocities of both vehicles in the experiment. The 
surface vehicle must estimate the position of the underwater one in order to track it; the 
underwater vehicle needs to estimate the position of the surface one in order to use the 
USBL measurements (range and bearing between vehicles) to infer its own position. Note 
that bearing and range measurements are used by the filter as separate measurements, so 
that the variance of the bearing measurement noise can be assumed much bigger than that 
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 of the range. Indeed, the filter was set to be only slightly affected by bearing measurements, 
reducing the effect of big deviations. 

The state of the filter was defined as 𝑥 = [𝑝, 𝑣, 𝑣𝑐  , 𝑝1, 𝑣1]𝑇, each of these entries is a 2D 
vector where 𝑝 is the estimated global position (𝑥, 𝑦), 𝑣 the inertial velocity, 𝑣𝑐  the velocity 
of the current, and the number indices refer to other agents estimates. 

The state transition model is shown in Figure 2.2 and a list of the updates appears in Figure 
2.3. 

 
 

Figure 2.2 - State transition model 

 
 
Figure 2.3 - Updates for the filter 

 
 

 

Note that despite the fact that the filter can be used for 𝑛 agents, it was only used for 2 
vehicles. Delays were taken into account by keeping a buffer of previous measurements with 
their correspondent state and covariance. Moreover, outliers are rejected using a 
normalized residual validation gate which is then displayed real-time on the console, if a Wi-
Fi link to the vehicle is available. 

The underwater vehicle relies mainly on DVL measurements for short-term navigation, so its estimate of the 
surface vehicle position is not so critical. However, the estimate of the underwater vehicle computed at the 

surface one is important, since the tracking is based only on this estimate. We focus here on illustrating this.  

Figure 2.4 shows the residual of range measurements, i.e. the difference between each 
range measurement and the expected range value from the EKF state. Note that the 
performance is reasonable since these measurements are obtained only approximately once 
every 6 seconds and the surface vehicle has no extra information regarding the motion of 
the underwater one. In particular, the velocity of the underwater vehicle is very hard to 
estimate with such scarse data. In the future, the underwater vehicle will broadcast its 
velocity and we expect the performance of this filter to improve. 
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Figure 2.4 - Range residuals on a filter update 

 

3 Single Beacon Navigation (IST) 

 

Autonomous underwater vehicles (AUVs) have supplanted the conventional methods for the 
ocean exploration to carry out a wide range of scientific and commercial missions. For the 
successful execution of these missions, position estimation of vehicles is a critical 
component. Vehicle positioning and underwater target localization systems pose a greater 
challenge in marine robotics due to absence of GPS. As an alternative, acoustic based 
methods such as LBL (Long Baseline), SBL (Short Baseline), and USBL (Ultra Short Baseline). 
With the increasing level of autonomy, there was a need for the development of reliable and 
cost effective underwater navigation systems and, recently, there has been a growing 
interest aimed at the implementation of integrated motion planning algorithms that can 
adapt to the circumstances as the mission unfolds. In particular, while a fleet of AUVs 
operating autonomously, the position estimate based on the noisy measurements of the less 
accurate sensors significantly depends on the type of the motion imparted of the AUVs. 
Thus, due to the limited resources of AUVs, the accuracy of the localization can be improved 
by imposing proper motion on the individual AUVs.  

In this context, we address the problems of range-based marine vehicle positioning and 
target localization with or without ocean currents. Vehicle positioning aims to estimate the 
positions of one or more vehicles from a sequence of range measurements to fixed or 
moving acoustic beacons, the positions of which are known functions of time. In this context, 
the vehicles must execute sufficiently exciting maneuvers while avoiding inter-vehicle 
collisions, so as to maximize the range-based information available for multiple vehicle 
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 positioning. In an estimation theory setting, the paper proposes a method to compute 
multiple vehicle trajectories so as to maximize the determinant of an appropriately defined 
Fisher Information matrix, subject to collision avoidance constraints. A numerical solution is 
proposed for the general case. Analytical solutions are obtained in the case of one vehicle 
and one beacon, when the latter undergoes trajectories that are straight lines, pieces of arcs, 
or a combination thereof. The theoretical analysis is complemented with practical 
experiments that focus on the dual problem of underwater target localization. The objective 
is to estimate the position of a moving underwater target by using range measurements 
between the target and a vehicle, called a tracker, undergoing a trajectory that can be 
measured on-line. The experimental set-up includes a surface and an autonomous 
underwater vehicle of the Medusa-class playing the roles of tracker and target, respectively. 
In the methodology adopted for system implementation the tracker runs three key 
algorithms simultaneously, over a sliding time window:  

i) Tracker motion planning,  

ii) Tracker motion control, and  

iii) Target motion estimation based on range data acquired on-line.  

The experimental results show that the strategies adopted for vehicle positioning and target 
localization hold considerable promise for practical system implementation. 

 

Model 

We consider a general scenario of 𝑝 vehicles and 𝑞 beacons scenario and model the each of 
the vehicle by the simple kinematics given by 

∑ :
𝑖

NC
 

𝐩̇[𝑖] =  [
cos(𝜒[𝑖]) −sin(𝜒[𝑖])

sin(𝜒[𝑖]) cos(𝜒[𝑖])
] [𝑣1

[𝑖]

0
] 

𝜒̇[𝑖]  =  𝑟[𝑖] 

where 𝐩[𝑖] ∈ ℝ2 is the inertial position of the 𝑖th vehicle, 𝑣[𝑖] is the linear body-speed of the 

𝑖th vehicle, 𝜒[𝑖]is the course angle of the 𝑖th vehicle, and 𝑟[𝑖] is the course-rate the 𝑖th vehicle. 
The vehicle is equipped with acoustic sensors that measure distances to beacons whose 
position as a function of time is known in inertial frame. We are interested in estimating the 

initial position of each of the vehicles  𝐩0
[𝑖]

∈ ℝ2 using the ranges to the beacons that are 

corrupted by white Gaussian additive noise. 

In the presence of constant, unknown ocean currents 𝐯c ∈ ℝ2 the equations are given by 

∑ :
𝑖

C
 

𝐩̇[𝑖] =  [
cos(𝜒[𝑖]) −sin(𝜒[𝑖])

sin(𝜒[𝑖]) cos(𝜒[𝑖])
] [𝑣1

[𝑖]

0
] + 𝐯c 

𝐯̇c   = 𝟎 

𝜒̇[𝑖] =  𝑟[𝑖]. 
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 In this particular scenario, we are interested in estimating the initial position of each of the 

vehicles  𝐩0
[𝑖]

∈ ℝ2 and constant, unknown ocean currents 𝐯c ∈ ℝ2 the using the ranges to 

the beacons that are corrupted by white Gaussian additive noise. 

 

Cost Function 

The choice of cost functional is the Fisher information matrix (FIM), which is related to the 
lower bound achieved by an unbiased estimator. So, the aim is to maximize the Fisher 
information. To facilitate the derivation of the FIM we assume that inputs to vehicles are 
piecewise constant functions, that is, the surge speed and course rates are piecewise 
constant function.  

First we assume that there is no ocean current. To this end, for each vehicle, we let 

𝐹𝐼𝑀NC
[𝑖]

(𝐩0
[𝑖]

) ∈ ℝ2×2 denote the FIM. It can be shown that the overall FIM with 𝑚 vehicles, 

i.e., 𝐹𝐼𝑀NC (𝐩0
[1]

,⋅∙∙∙∙, 𝐩0
[𝑝]

) ∈ ℝ2𝑝×2𝑝, is nothing but the direct sum of the FIM of the each 

vehicles. With this, we define our cost function as 

𝐽NC(𝐮) ≔ ln (det (𝐹𝐼𝑀NC (𝐩0
[1]

,⋅∙∙∙∙, 𝐩0
[𝑝]

))). 

Next, we assume that there are ocean currents. For each vehicle, we let 𝐹𝐼𝑀C
[𝑖]

(𝐩0
[𝑖]

, 𝐯c) ∈

ℝ4×4 denote the corresponding FIM and the overall FIM with 𝑚 vehicles, i.e., 𝐹𝐼𝑀C (𝐩0
[1]

,⋅∙∙∙∙

, 𝐩0
[𝑝]

, 𝐯c) ∈ ℝ4𝑝×4𝑝, is the direct sum of the FIM of the each vehicles. Now our cost function 

becomes 

𝐽C(𝐮) ≔ ln (det (𝐹𝐼𝑀C (𝐩0
[1]

,⋅∙∙∙∙, 𝐩0
[𝑝]

, 𝐯c))). 

In the above we have defined our cost function. Our aim now is to find the control input 𝐮 
that maximizes the cost function 𝐽NC(𝐮) in the absence of currents and 𝐽C(𝐮) in the 
presence of ocean currents. Mathematically, 

𝐮NC
∗ = max 

𝐮 ∈ 𝓤
 𝐽NC(𝐮)    (Without currents) 

𝐮C
∗ = max  

𝐮 ∈ 𝓤
 𝐽C(𝐮)          (With currents). 

Solving the above optimal control problem is not easy. The derivation of FIM for the both of 
the set-ups are given in (Moreno-Salinas, et al. 2016)Error! Reference source not found. and 
(Crasta, et al. 2016). The reference (Moreno-Salinas, et al. 2016) provides a detailed 
construction of an analytical solution to the first optimal control problem (without currents) 
and it is implemented in real-time as explained in the later section. 

In the sequel we focus on the case where there is no current. Borrowing results from matrix 
theory, it can be shown that the optimal value of the FIM for a single vehicle in the absence 
of currents is given by 

𝐹𝐼𝑀NC
[𝑖]

(𝐩0
[𝑖]

) = (
𝑚𝑞

2𝜎2
) [

1 0
0 1

] 
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 where 𝑚 and 𝜎 are the number of samples and the noise covariance, respectively (Here we 
assumed that all the sensors have the same covariance). Consequently, the overall optimal 
of the cost function is given by 

det (𝐹𝐼𝑀NC (𝐩0
[1]

,⋅∙∙∙∙, 𝐩0
[𝑝]

))=(
𝑚𝑞

2𝜎2
)

𝑝

.  

Now that we know the optimal value of the cost, our task is to find a trajectory, or 
equivalently, an input that achieve the optimal value of the cost. We have actually 
constructed an analytical solution that achieves the optimal control objective. 

 

Algorithm 

Figure shows the overall architecture of the algorithm. It has three components 

i) Planner, 

ii) Controller, 

iii) Estimator. 

Planner optimizes the cost functional (log of the determinant of the FIM) over a pre-fixed 
time horizon or number of samples and generates optimal positions. The planner uses the 
nominal speed for generating the optimal positions.  

Controller executes the corresponding inputs, that is, body-speed and course-rate, to drive 
the vehicle to the next optimal position to acquire the range measurement. From the 
optimal position generated from the planner, controller finds the inputs that are compatible 
with the adopted model. 

Finally, the Estimator estimates the position using the new range measurement. At the new 
optimal position the procedure is repeated. All these computations are implemented on the 
vehicle. 
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Figure 3.1 - Flow chart of the algorithm 

4 Maximizing observability by using extremum seeking (UNIZG-FER) 

Good underwater localization is of utmost importance for successful execution of all CADDY 
scenarios and therefore USBL systems are used to achieve that. Cheaper alternative is to use 
range only measurements. In such case unmanned surface vehicle (USV) is trying to execute 
trajectories informative enough in order to enhance observability of an underwater object, 
e.g. AUV or diver, which navigates itself by using only range measurements acquired by 
acoustic modems. We investigate the possibility of using extremum seeking (ES) scheme for 
online determining of informative enough beacon trajectories with lower computational 
effort. ES scheme is usually deployed when system model is not known very well or even 
completely unknown and its use for navigating autonomous vehicles towards an unknown 
source using measurements that indicate field intensity in certain point in environments 
without GPS signal is a common research. 
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Figure 4.1 - Extremum seeking scheme 

 

As it has been noted, in order to estimate its position using single range measurements, the 
vehicle has to travel sufficiently informative trajectories. This can disable the vehicle from 
doing other useful activities which require trajectories that are not informative enough. In 
order to avoid that, an approach with two vehicles, where one of them is a beacon, can be 
used. In that case, a mobile beacon, which knows its position accurately (from GPS), is 
responsible for travelling trajectories which will provide informative range measurements 
for the vehicle’s navigation filter. Figure 4.1 depicts the main idea which enables better 
vehicle position estimation by using single beacon measurements. Mobile beacon sends its 
position (𝑥𝑏 , 𝑦𝑏) to the vehicle’s Kalman filter used for navigation. Information generated in 
the navigation filter is then used to calculate cost function value J which gives a measure of 
observability. Current cost value is then sent to mobile beacon which tries to minimize it 
online by using extremum seeking scheme which steers the mobile beacon towards the 
minimum of cost function. The beacon again sends its position to the vehicle, thus closing 
the control loop. Range measurement used for determining vehicle’s position is acquired 
during the communication cycle.  
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Figure 4.2 - Simulation results for the static vehicle scenario 

The proposed algorithm was simulated for two different scenarios: stationary vehicle and 
mobile vehicle assuming curved trajectory. For both scenarios, we compared the basic case 
where mobile beacon executes constant speed circle trajectory which ensures system’s 
observability, and the case where the mobile beacon is assuming the trajectory generated by 
the extremum seeking algorithm. Figure 4.2 and Figure 4.3 represent simulation results for a 
static vehicle and moving vehicle scenario, respectively. 

Proposed mobile beacon trajectory generation method is particularly interesting for 
underwater application because of limited bandwidth of acoustic communication. In the 
extremum seeking scheme, the only data that needs to be transmitted over the acoustic link 
is the cost function value which is sent from the vehicle to the beacon, and the beacon 
position data needs to be sent to the vehicle. Extremum seeking is not a model based 
approach so it can be easily deployed on different types of vehicles. That can be particularly 
interesting in cases when model is difficult or impossible to obtain, i.e. in the case when the 
vehicle is replaced with a human diver. Another great advantage of extremum seeking is the 
fact that constant disturbances acting on vehicle, i.e. gravity, buoyancy or currents, are 
automatically compensated by the extremum seeking control loop. Furthermore, the 
proposed algorithm does not require knowledge of the vehicle’s trajectory in advance. That 
can be particularly useful in real–life conditions when planned trajectories are known but 
currents that affect the vehicle and the mobile beacon change its desired trajectory and 
decrease optimality of solution. 
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Figure 4.3 - Simulation results for the moving vehicle scenario. 

 

5 Results 

5.1 Single Beacon Navigation (IST) 

In section 3, we considered the problem of finding optimal trajectories for vehicle 
positioning using range measurements to a known beacon. Now, we are interested in the 
problem of finding optimal trajectories of a vehicle, whose position is known, for an 
unknown target localization using range measurements to the unknown target. In the 
former problem, the vehicle position is unknown and the beacon is known, while in the 
latter problem the vehicle position is known and the target is unknown. However, in both of 
the cases the vehicle should optimize its trajectory either for self-localization or target 
localization. 
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 In this section we discuss the implementation of the proposed method for the dual problem 
of cooperative target localization using range and depth information in 3D. We present a 
preliminary experimental result carried out with two autonomous marine vehicles of the 
Medusa class. Each vehicle has two side thrusters that can be independently controlled to 
impart forward and rotational motion. In addition, these are equipped with an attitude and 
heading reference system (AHRS) that provides measurement of body orientation and body-
fixed angular velocity. Each vehicle is equipped with an acoustic Blueprint Seatrac data 
modem and ranging unit that is used for communications and also to measure the ranges 
among vehicles. Throughout the test, one of the Medusa vehicle was used as an underwater 
target, while the other Medusa was used as a surface vehicle interrogating the target. 

In this mission the target vehicle was making a lawnmower trajectory starting from an 
unknown initial position without ocean currents. The target was operating at a constant 
depth of 1m and a constant body-speed of 0.2m/s and was navigated by combining the USBL 
and DVL information. All the computational algorithms such as optimal control and 
estimation were executed on board of the surface vehicle without the use of USBL angle 
measurements and the EKF was used as an estimator without USBL measurements. While 
estimating the target vehicle position, it had the access to both range and velocity vector of 
the target for every 1.5s. In this regards, this is not a truly range-only target localization. 
Figure 3.1 shows the overall block diagram of the algorithm. 

At first, the planner solves the optimal control problem to find the optimal sequence of 
inputs for the next six samples, that is, it provides optimal values for the piecewise constant 
body-speed and the yaw-rate for the next six samples. In the next step, we apply the first 
optimal speed and yaw rate to the surface vehicle to drive to the next optimal location to 
acquire the new range measurement. The process is repeated at this new optimal location. 
Figure 5.1 shows the plot of the optimal trajectory of the surface vehicle and the estimated 
trajectory of the target. The target trajectory was estimated in two ways using the range-
only information and the USBL information. Figure 5.2 shows the time-history of the optimal 
body-speed and the measured body speed. Note that at the beginning of the speed profile, 
the measured speed was saturated at the nominal speed 1m/s of the Medusa. This was due 
to the fact that the planner was carried with a nominal speed of 1.5m/s and a sampling time 
of 6s against the nominal speed of 1.0m/s and sampling time of 1.5s. This is also visible in 
the first leg of the surface vehicle trajectory in Figure 5.1. Figure 5.3 shows the time-history 
of the heading angle, while the Figure 5.4 represents the actual measurements, while Figure 
5.5 shows the position variance. 

Finally, the optimal FIM is given by (mσ−2/2) I2, where I2 the identity matrix of size two, that 
is, the off diagonal elements of the FIM are zero, while the diagonal elements are equal and 
is given by m σ −2/2. Consequently, the optimal determinant of FIM is m 2σ−4/4. Figure 5.6 
and Figure 5.7 show the plot of the evolution of the normalized FIM and normalized 
determinant versus number of samples, which is consistent with our theoretical findings. 
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Figure 5.1 - The optimal ASV and estimated target trajectories 

 

 

Figure 5.2 - Body-speed profile 

 

 

Figure 5.3 - Optimal heading angle time-history 
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Figure 5.4 - The range measurements 

 

 

Figure 5.5 - The position variance 

 

 

Figure 5.6 - Components of normalized FIM 
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Figure 5.7 - Determinant of normalized FIM 

 

 

5.2 Extremum Seeking (UNIZG-FER) 

5.2.1 Tracking by using extremum seeking 

In order to validate simulation results of extremum seeking tracking, during field trials, which 
took place in Biograd na Moru, Croatia in June 2015, algorithms for diver tracking using 
range-only measurements from an autonomous surface vehicle were tested. By using only 
range measurements surface vehicle was able to localize underwater target, i.e. diver, and 
stay on top of its position. That was achieved using three different extremum seeking 
algorithms. Test setup, shown in Figure 5.8, consisted of PlaDyPos platform with USBL 
modem which provided range measurements from VideoRay ROV that simulated the diver. 

   

PlaDyPos VideoRay ROV USBL with custom built cage 
 

Figure 5.8 - Systems used during extremum seeking experiments 

The basic idea of extremum seeking control  is to find control input u∗ which generates 
output y∗, where y∗ is minimum steady-state system output of unknown map y = F (u). 
Optimal control input u∗ is found by performing online gradient estimation. So in order to 
track the diver we want that the range between diver and surface vehicle is as low as 
possible. 
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Trajectory 

 

Range 

  

Speed Force 
 

Figure 5.9 - Extremum seeking experimental results 

Basic extremum seeking algorithm successfully localized underwater target, but alternative 
versions with EKF based gradient estimation showed better results due to the better speed 
of convergence. Some results are shown in Figure 5.9. As it can be seen from Figure 5.9, 
range measurements are sometimes affected by outliers caused by reflections from the 
underwater obstacles. Therefore, implementation of outlier rejection due to possible 
outliers is necessary. 

Great advantage of extremum seeking is the fact that constant disturbances acting on 
vehicle, i.e. gravity, buoyancy, currents are automatically compensated by extremum 
seeking control loop which was supported by experimental data.  Although range 
measurements are delayed, and there was very strong influence of wind, PlaDyPos 
successfully located underwater target position. Over 40 tests using extremum seeking 
algorithms were successfully conducted in changing conditions which shows robustness of 
approach.  
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5.2.2 Maximizing system observability by using extremum seeking 

In order to validate simulation results, during validation trials, which took place in Biograd na 
Moru, Croatia in June 2015, algorithms for maximizing system observability by using 
extremum seeking described in were tested. Figure 5.10 depicts systems used during 
experiment: PlaDyPos surface vehicle, Buddy underwater vehicle both equipped with USBL 
modem. 

 

 

 

PlaDyPos Buddy USBL modem 
 

Figure 5.10 - Systems used during extremum seeking experiments 

Figure 5.11 depicts first test scenario where underwater vehicle is virtual, and range 
measurements used to calculate cost function are simulated. It is clearly visible that we have 
a part where beacon vehicle approaches underwater vehicle while vehicle is static, and a 
second part of test where underwater vehicle is following straight line trajectory. 

 

Figure 5.11 - Virtual target 

Figure 5.12 depicts the same scenario with the difference that range measurements 
acquired through acoustic communication are used. It is important to note that such 
measurements are delayed. More detailed scenario descriptions are given in Tables 4.4.1 
and 4.4.2. 
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Figure 5.12 - Buddy as underwater target 

 

Experiment: Validation output: Result: 

1. Virtual target underwater is static, 

PlaDyPos tracks the target using the 

new ES method, range measurements 

simulated 

PlaDyPos converges 

towards the virtual 

target 

Pladypos successfully converges 

to virtual static target. Cost 

function is decreasing towards 

minimum 

2. Virtual target underwater is 
moving along a straight line, 
PlaDyPos tracks the target using the 
new ES method, range 
measurements simulated 

PlaDyPos converges 

towards the virtual 

target 

Not tested due to time 

constraints imposed by bad 

weather 

Table 4.4.1 Scenario 1: virtual underwater target, PlaDyPos as beacon vehicle 

 

 

Experiment: Validation output: Result: 

1. PlaDyPos converges towards 
static BUDDY (underwater) using the 
new ES method, range 
measurements obtained via acoustic 
link 

PlaDyPos converges 

towards BUDDY 

Pladypos successfully converges 

to position above Buddy vehicle. 

Cost function is decreasing 

towards minimum 

2. PlaDyPos converges towards 
BUDDY (underwater) moving along 
a straight line, using the new ES 
method, range measurements 
obtained via acoustic link 

PlaDyPos converges 

towards BUDDY 

Pladypos successfully coto virtual 

static target. Cost function is 

decreasing towards minimum 

Table 4.4.2. Scenario 2: BUDDY underwater, PlaDyPos as beacon vehicle 

 

In this section results for scenario 1 where virtual underwater target was used and scenario 
2 where Buddy vehicle was used as underwater vehicle are shown.   
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 Figure 5.13-5.17 represent results of experiment 1 from scenario 1. Label “Beacon” denotes 
beacon vehicle trajectory, while label ”Single range” denotes underwater vehicle position 
estimate given by the  extremely simple relative distance navigation filter whose covariance 
matrix P is also used for calculating observability cost shown in Figure 5.14. It is visible that 
proposed algorithm steers the cost towards its minimum and beacon vehicle towards 
circular trajectory around the vehicle. Such trajectory is known to have good observability 
properties when using single range measurements.  In the end of the test, around 1100 
seconds mark, algorithm was stopped in order to show how cost function grows unbounded 
when algorithm is not active. 

 

 

 

Figure 5.13 - Beacon and vehicle trajectories Figure 5.14 - Cost value 

  

Figure 5.15 - North coordinate Figure 5.16 - East coordinate 
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 Next, results for scenario 2 where Buddy vehicle was used as underwater vehicle are shown.  
Figure 5.17-20 show underwater vehicle and beacon trajectories for experiment 1 from 
scenario 2. In conducted experiments USBL measurements were used as ground truth, while 
”Single range” label denotes underwater vehicle position estimate given by the simple 
relative distance navigation filter.  Observability cost calculated from covariance matrix P is 
shown in Figure 5.18. It is visible that even in case of delayed acoustic measurements 
proposed algorithm steers the cost towards its minimum and beacon vehicle towards 
circular trajectory around the vehicle. 

 

  

Figure 5.17 - Beacon and vehicle trajectories 

 

Figure 5.18 - Cost value 

 

  

Figure 5.19 - North coordinate 

 

Figure 5.20 - East coordinate 

 

Figure 5.21-24 show underwater vehicle and beacon trajectories for experiment 2 from 
scenario 2 where underwater vehicle executes straight line trajectory. Looking at 
observability cost shown in Figure 5.22. It is clear that cost value is bounded thanks to 
algorithm acting on beacon vehicle. As expected beacon vehicle moves along the 
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 underwater vehicle trajectory while simultaneously circulating in order to ensure good 
observability. 

 

 

 
 

Figure 5.21 - Beacon and vehicle trajectories 

 

Figure 5.22 - Cost value 

 
 

Figure 5.23 - North coordinate Figure 5.24 - East coordinate 
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 6 Conclusions 

 

This deliverable has described the design and implementation of several navigation 
algorithms in the scope of CADDY project, either resorting to USBL, DVL and exchanged data 
or to range and data only, providing the position of all the agents. Further testing will be 
done in October 2016, with the whole system working. 
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