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 1 Outline of the deliverable 

 

This deliverable describes the diver buddy tasks algorithms designed and implemented in the 
scope of the CADDY project. The aim of such tasks is to provide the CADDY system with 
useful features so that the divers’ work is eased by doing tasks like imagery acquiring, 
picking up objects from the boat (without the need of waiting for decompression, carrying 
heavy tools, among other aspects). 

Over this document, these tasks “diver buddy tasks” that were implemented are going to be 
described from the theoretical point of view, as well as in-water trials results. 

 

 

2 Performing a mosaic over an area 

 

Navigation and Control of the robots 

 

One of the most resource-demanding tasks where the CADDY system can undoubtedly 
improve diving is mosaicking. Nowadays it is required that a human diver goes on a lawn 
mower maneuver for huge amount of time to acquired quality imagery. They resort to big 
structures where cameras and light are embedded as seen in Figure 2.1. 

Moreover, a navigation system for the diver has to be in place. Usually, before the survey a 
grid made of ropes is attached to the area of interested so that the diver can follow roughly 
the maneuver. 

 

Figure 2.1 – Diver acquiring stereo images (Photo: Andrew Gray/NOAA) 
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With the CADDY system, both navigation and imagery acquisition are solved, making the 
same operation faster, with fewer human resources, thus safer. 

Regarding implementation, while the surface vehicle is performing the same control strategy 
as described in Deliverable 4.2, Implementation of cooperative control and formation 
keeping with diver in the loop, BUDDY is performing a path following maneuver. In [1], one 
can have a full description of the setup used on this experiment. 

The goal of a path-following algorithm is to guide a vehicle to a path at a given velocity 
profile. No time constraint is set, i.e. it is not designed such that a desired position for the 
vehicle is issued for each time instant. The current implementation of the path-following 
algorithm works with paths defined at a predefined depth or altitude. The algorithm works 
in an outer-loop control design and it is responsible to issue the convenient heading and 
speed commands to the inner-loops based on the actual position and desired mission. A 
detailed description of the algorithm can be found in [2]. In short, the algorithm iterates over 
the following steps: 

 computes the closest point on the path, 𝒑𝒄, to the estimated position of the vehicle 
𝒑; 

 computes the angle 𝛽 of the vector tangent to the path at 𝒑𝒄; 

 computes the cross-track error e as the projection of the position of the vehicle 

relative to the position of the closest point, 𝒑 – 𝒑𝒄, on a direction 𝛽 +
𝜋

2
; 

 issues a heading command, 𝜓𝑑, computed by a Proportional-Integral (PI) controller 
on 𝑒, and a speed command, 𝑢𝑑, to the inner-loops, as given by 

 

𝜓𝑑 = β + sin−1 [𝜎 (−
𝐾𝑝

𝑢
𝑒 −

𝐾𝑖

𝑢
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

)] 

 
𝑢𝑑 = 𝑢(𝒑𝒄) 

 

where 𝜎(·) is a saturation function that limits the result from -1 to 1, 𝑢(·) defines the 
desired speed as a function of the position along the path and 𝐾𝑥 the PI controller gains, 
Figure 2.2 illustrates the algorithm frames. 
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Figure 2.2 – Path following frames showing the body frame and path relations in the navigation frame {W} 

 

Once the path following controller generates surge and yaw set-point, they are passed to the 
Buddy low-level control architecture. The controller architecture is divided into kinematic 
position/orientation controllers and dynamic velocity controllers similar to the ones 
described in [3]. The low-level controllers allow for improved tracking of the yaw reference 
to ensure path-following stability. 

 

Results 

 

This CADDY functionality was demonstrated in March 2016, in Lisbon, during the 2nd year 
Review meeting. While preparing for the final demonstration, the path-following 
performance was tested several times. The lawnmowers varied in length and width and had 
a predefined 5 m distance between legs. These lawn-mowers, nine in total, were used to 
give a general performance overview. Cross-track errors for all lawn-mowers and the total 
distribution are shown in  

Figure 2.3, respectively. 

The median and mean cross-track errors are both ≈  5 cm. The maximum cross-track error is 
L∞  =  2.82 m and, together with most of the larger cross-track errors, it occurs during the 
mission start. Lawn-mowers are generated on request over the acoustic transmission and 
the lawn-mower origin is the current vehicle position. However, due to the asynchronous 
nature of ROS, the “current” position is taken before the newest position correction 
provided in the same acoustic message. In fact 50 % of cross-track errors are between 
−0.09 𝑚 and 0.18 𝑚 thus providing a good path-following performance when taking into 
account sparse position updates. 

Shown in Figure 2.4, the example lawn-mower is the final demonstration initiated by the 
reviewers. The lawn-mower parameters, length and width, were given as the image 
processing result and relayed over the surface Medusa, through acoustics, to Buddy. The 
figure shows the underwater and surface vehicle movement during the mission. The given 
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 inverse USBL positions are used for visualization purposes since the estimation filter takes 
surface position, acoustic range and bearing into account separately. The approach allows 
utilization of precise USBL range measurements even in cases when the bearing 
measurements are corrupted. On the figure it can be seen in some legs where the inverse 
USBL calculations diverge from the path. 

 

 

Figure 2.3 – (a) The cross-track error of all lawn-mower experiments and its distribution in (b). Vertical green 

lines represent the border between lawn-mowers. 

 

Figure 2.4 - Final demo lawn-mower experiment. The surface vehicle trajectory (dashed-line) is shown for easier 
visualization of the surface controller behavior 
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 Mapping 

 

Simultaneous Localization and Mapping (SLAM) is the process by which both the trajectory 
of the robot (localization) and a representation of the environment (mapping) is estimated 
at the same time [4]. Graph SLAM methods [5] represent the spatial relationships between 
sensor observations as a graph, also called a pose graph. Vehicle poses are estimated for 
each sensor observation of interest, forming the vertices of such a pose graph. Edges encode 
spatial constraints derived from the sensor data recorded at these poses. This may include 
motion estimates from a registration method or from vehicle odometry (also called 
navigation), as well as more complex constraints, e.g. feature observation constraints in the 
spirit of bundle adjustment [6]. 

 

Robust graph SLAM methods extend the traditional graph SLAM formalism by explicitly 
modeling and solving for outliers. Outliers in the spatial constraints may be the result of 
failed registration, e.g. divergence of ICP, wrong data association, or erroneous sensor data. 
Generalized Graph SLAM [7] developed at JACOBS is such a robust SLAM method. It explicitly 
extends the traditional SLAM representation by incorporating multiple possible motion 
estimates and the presence of a null-hypothesis, the hypothesis that no motion estimate is 
correct. This is achieved by replacing unimodal normal distributions with mixtures. A novel 
optimization method, called Generalized Prefilter, is also developed to be able to estimate 
accurate maps using this new representation. It is introduced as a mid-stage between the 
SLAM frontend, which is responsible for creating the pose graph data structure by 
performing the motion estimation, and the backend, which focuses on continuous 
optimization of the pose graph to estimate an accurate map. This mid-stage performs only 
discrete optimization based on the several choices of motion estimates in the Generalized 
Graph SLAM framework. It performs a minimum spanning tree traversal of the multimodal 
hypergraph using the total number of mixture components per edge as a weight, during 
which a combinatorial tree is generated with each leaf representing the exact component 
(including the Null hypothesis choice for hyperedges) chosen in the hypergraph traversal. 
Each component carries relative pose information used to assign poses to vertices visited in 
the traversal. This combinatorial tree is searched using beam search, where only the best N  
leafs, i.e., the ones with the highest joint probability given the computed poses, are kept at 
each iteration of the hypergraph traversal. When the traversal completes, the best 
remaining leaf of the combinatorial search tree, and thus the component choices along the 
corresponding hypergraph traversal, is picked. The computed poses on the path to this leaf 
are assigned to the vertices in the graph, and the remaining ambiguous edges are 
disambiguated by picking the component that best explains the estimated poses of the 
related vertices. Finally, the disambiguated unimodal graph including the computed vertex 
poses is then returned for subsequent continuous optimization in a standard SLAM backend. 

 

In our article published in the International Journal of Robotics Research in 2016 [4], 
Generalized Prefilter is compared against a number of other robust SLAM methods. 
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 Generalized Prefilter outperforms these competing methods by several orders of magnitude. 
This is further substantiated by results obtained in the CADDY project. 

 

The data collected by the CADDY system included high-resolution stereo imagery at 
approximately 4Hz as well as navigation data of the submerged vehicle which was already 
corrected by USBL and DVL measurements using a Kalman filter. In addition to a 3D 
registration method using SURF features localized in 3D through triangulation in the stereo 
images and subsequent RANSAC, a second motion estimate was produced from the vehicle 
navigation. While the navigation was quite good in general, it contained many sudden 
discontinuities from outliers of the USBL system. It thus served as an important but relatively 
unreliable information source. Therefore, a fusion of both sources of motion information, 
the 3D registration as well as the navigation, was proposed using the Generalized Graph 
SLAM framework. This resulted in a pose graph having two motion estimates for sequential 
edges where the vehicle navigation and 3D registration did not agree up to a small 
threshold. All information was thus preserved, at the expense of also including failures of 
either method. Generalized Prefilter was successfully used to estimate an accurate 3D map 
using this data. 

 

 

Figure 2.5 – A top-down view of the 3D map produced by Generalized Prefilter. Note the clearly visible and well-
aligned square concrete markers (left side) 

 

Other robust SLAM methods, all of them greedy, do not perform as well as Generalized 
Prefilter.  
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Figure 2.6 – Result of Olson and Agarwal’s MaxMixture [8] 

 

Figure 2.7 – Result of Suenderhauf’s Switchable Constraints [9] 
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Figure 2.8 – Result of Agarwal’s Dynamic Covariance Scaling [10] 

 

Before the experiment, markers were introduced in the area of interest and relative 
distances were measured. This data was used to quantify the accuracy of the maps produced 
by the different methods shown above. Generalized Prefilter achieved a root mean square 
error of only 0.04m. Other methods showed a significantly higher error of up to 600m due to 
their divergence. 

 

3 Observing the diver 

As mentioned in previous deliverables, diver observation/monitoring is carried out by the 
virtual target algorithm. The algorithm depends on quality of the diver position estimator 
which fuses measurements from camera, sonar, USBL measurements with raw diver data. 
Following sensor measurements are available: 

1. Stereo camera  
a. provides range and bearing to diver point-cloud – close distance 
b. provides the diver relative orientation to the camera 

2. Sonar 
a. provides range and bearing to diver – medium to close distance 

3. USBL 
a. provide range and bearing to diver – short to long distance 
b. provide diver heading and depth through acoustic communication 

 

Diver depth is measured from the available depth sensor of the Seatrac modem, offering 
precision of 0.5 m. Absolute heading of the diver is estimated from diver-net measurements.  
These measurements arrive once per cycle or approximately every 5 sec. Low update rates 
do not affect depth since it changes slowly during the dive. However, orientation changes by 
the diver are much faster and estimation can only be obtained by camera aiding in scenarios 
where the diver turns in-place. Additionally, changes in orientation during movement can be 
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 observed directly by course estimation from range and bearing measurement. Based on 
these measurements it is assumed that the relative position of the diver to Buddy is known. 
Previous sections have shown that knowledge of the absolute Buddy position is also 
available. The Serret-Frenet path {P}, the body {B} and navigation {N} frames were defined in 
previous deliverables concerning the virtual target tracking algorithm and are not be 
repeated here. The main terms are the vehicle position in {P} denoted as d, the diver 
position in {N} denoted as 𝒓𝒏 and the desired monitoring position µ∗ given as a scalar value 
of the parameterized path. Note, that µ∗ is zero, i.e. in front of the diver, for the monitoring 
position but can be used to specify arbitrary positions relative to the diver. 

 

Using this data the kinematic controller for the diver observer algorithm can be stated as: 

 

𝝂𝟏 = 𝑹𝒑
𝒃(−𝑲𝒑𝒅𝒅 + 𝑹𝒏

𝒑
�̇�𝒏 + µ̇∗𝒕) 

�̇�∗ = 𝑘𝜛(𝑠 − 𝜎�̃� tanh 𝑘�̃��̃� + µ̇∗) 

 

where �̇�∗ and �̃� represent the desired speed of the virtual target along the path and the 
difference between the virtual target and desired monitoring position. The sigmoid term is 
added to control the magnitude of the path error thus preventing escape of the virtual 
target from the vehicle in presence of large errors. Additionally, this term allows faster 
convergence to the desired point. Detailed description and derivation of the controller can 
be found in [10]. 

Previous experiments focused on use of virtual divers and vehicles to emulate diver 
behavior. In contrast, preliminary results shown here include tests with a human diver 
during stereo camera tuning experiments in the Croatian Shipbuilding Institute. Results 
present basic diver tracking using camera measurements only. 

Two experiments from the emulated diver are shown in Figures 3.1 and 3.2. First, the diver is 
static and changes only orientation in 15, 30, 45 and 90° steps. Figure 3.1a shows the 
absolute path error for radius R=4m. Most range error samples are within +/- 0.1m 
indicating close tracking of the safety circle around the diver. Transition speed is slow due to 
limited sway speed. 
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Figure 3.1  – Rotation experiment transitions on left and distance statistics during experiment on right (USV 
emulated diver) 

 

Second experiment considered a dynamic emulated diver where the vehicle moved along a 
path and then performed two 90° turns to force the vehicle in an overtaking maneuver. It 
can be seen that the vehicle converges in front of the diver after overtaking. The tracking 
errors are inside +/- 0.4m showing a bias. Since pure measurements are used the emulated 
diver speed is not estimated and no feed-forward is present. This causes the proportional 
controller to exhibit a static error during tracking. 

 

 

 

 

Figure 3.2  – Diver tracking and overtaking experiment (USV emulated diver), distance statistics is shown on 
right 
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 Previous example considered only the use of multibeam sonar measurements to evaluate 
basic tracking capabilities. Sonar detection supports blob and highlight tracking and can be 
easily used with diver emulation. However, issues arise in testing stereo camera detection 
and recognition as an emulation is not easily achievable. Therefore, preliminary test results 
for tracking with raw stereo camera measurements utilize a real diver in the loop. 

Two rotation experiments were carried out with the diver choosing the pace and magnitude 
of the rotation. Usually, the diver chose increments between 15-30° and waited for the 
vehicle to achieve close convergence. The path error was normalized with the safety circle 
radius to indicate normalized angular errors. Normalized angular errors should allow 
comparison for missions with different safety distances. Additionally, relative comparison of 
diver heading and path locations is achieved. 

 

 

Figure 3.3  – Path position (first rotation experiment) 

 

Figure 3.3 shows the first rotation experiment results. The jumps indicate diver rotation In 
place. Notice than on average less than 20 seconds are required for convergence. 
Occasionally, the diver did not wait for convergence as seen in t=100s. Notice that the 
desired path position always matches the diver heading. 

Range and bearing, as estimated by the stereo camera, are shown in Figure 3.4. The range 
error is < 0.2m during most of the experiment and bearing angle is fluctuation between -/+ 
5°. Diver and Buddy movement, for both rotation experiments, are shown in Figure 3.5a and 
Figure 3.5b. Observe that the diver appears to be moving in a circular fashion. The artifact 
occurs due to Buddy dead-reckoning as the surface vehicle was not part of the preliminary 
experiment. The dead-reckoning error is better observable in the case where the diver turns 
first clockwise and then anti-clockwise around the same point. However, due to the error the 
paths diverged over time. 
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Figure 3.4  – Range and bearing towards diver estimated from stereo camera (first rotation experiment) 

 

  

Figure 3.5a  – Dead-reckoned position (first rotation 
experiment) 

Figure 3.5b  – Dead-reckoned position (second 
rotation experiment) 

 

The second experiment is shown in Figure 3.6 and Figure 3.7. The tracking behavior exhibits 
similar performance with an exception of the outlier around 40s. Convergence in front of the 
diver can be observed in the lower plot of Figure 3.6. However, the bearing estimates are 
increased between +/- 10°. While the effect of this measurement is smaller for the used 
range R=2 m it contributes to larger oscillations as the safety distance increases. Considering 
this the measurements from the stereo camera should be ignored above 3, 3.5 m as the 
bearing estimate will affect also the diver position estimator.  

Figure 3.8 and 3.9 show the experiment in which the diver moves toward and away from the 
vehicle. The vehicle tracks the diver and positions directly in-front. The angular error is small 
since only linear motion is performed by the diver. When observing range static errors can 
be seen at 70-90s and 110-160s as the diver moves towards and away from the vehicle. Part 
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 of the static error is again attributed to the fact that no feed-forward is calculated and the 
integral constant is turned off. Additionally, for the safety of the diver the maximum vehicle 
speed was limited to 0.3m/s in surge thus increasing the error in cases when the diver 
moved faster than this limit.  

 

 

Figure 3.6  – Path position (first rotation experiment) 

 

 

Figure 3.7  – Range and bearing towards diver estimated from stereo camera (second rotation experiment) 
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Figure 3.8  – Path position (movement experiment) 

 

 

Figure 3.9  – Range and bearing towards diver estimated from stereo camera (movement experiment) 
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 4 Carry-to-boat 

 

Validation trials introduced a Buddy slave action which requires Buddy to carry objects from 
the diver to the surface station and back, see Error! Reference source not found.. The 
behavior consists of two steps: a) indicating to Buddy that it should allow the diver to 
approach, b) commanding Buddy to bring the object to the boat.  

The first step is commanded by use of the tablet, where the diver issues an allow_approach 
(ID=5) command to Buddy. Once Buddy receives the command it confirms it back over 
acoustics to the diver and additionally indicates the current mission on the Buddy tablet. The 
step involves at maximum two controllers - depth and heading. Position control is avoided to 
allow divers to manipulate Buddy with minimum risk. Depth control is required to avoid 
surfacing during diver approach. Orientation requires low-usage of horizontal thrusters and 
can be considered safe and is therefore recommended to be part of the allow_approach 
state. 

The state machine accommodates this behavior and switches the usual guide_me state in 
favor of allow_approach. Once the diver approaches and hands over the desired tool or 
found artifact to Buddy he can distance himself from buddy and initialize the guide_me 
behavior via the diver tablet. The second step is then performed by use of gestures to 
indicate what Buddy should do with the object, e.g. carry it to the boat. Note that in general 
the second step is optional. 

The carry_to_boat behavior is triggered by use of gesture commands and consists of three 
parts. The first part activates surfacing while maintaining position. Once on surface Buddy 
establishes wireless communication with the surface vehicle and hands over the acoustic 
interrogation master role. The surface vehicle resumes acoustic localization and 
communication with the diver. During the second, surface part, Buddy proceeds towards the 
boat to deliver the object. Successful object retrieval is indicated by the command centre 
upon removal of the object from Buddy. The third part of the command is activated 
prompting Buddy to return to the diver in guide_me behaviour. Acoustics interrogation on 
Buddy is resumed upon diving while the surface vehicle switched back to interrogation slave 
role. Three controllers: heading, depth and horizontal position; are involved during all parts 
of the carry_to_boat behaviour. 

All controllers used were already presented in previous deliverables and publications, see 
[3]. 
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Figure 4.1 – The Carry-to-boat concept 

5 Robotic tasks activation 

The actions executed by the robotic platform, previously described in this deliverable, are 
triggered by the diver by means of hand gestures that are recognized by the robotic system 
and translated into suitable commands. 

In particular, the mission controller acts as a cognitive planning and supervision system 
taking as input the decoded gesture sequence executed by the diver, in turn generating 
proper task activation actions in such a way to trigger the required capabilities needed to 
provide the requested support. The main goal of the mission control module is to abstract 
the robotic capabilities at logical level and manage the activation of the real robotic 
primitives, while at the same time resolving possible conflicts that may arise when selecting 
the robotic capabilities to be triggered. 

The mission controller architecture is implemented my means of a modular Petri net that 
allows the automatic conflict detection and resolution among the task activations. 

The detailed description of the hand gesture interpretation pipeline and mission controller 
development and employment is reported in the Deliverable D3.3. 

In Figure 5.1, for ease of reference, the sequence of gestures that trigger the mission "Carry-
to-boat" are described. Further details about CADDIAN and its gestures can be found in 
Deliverable D3.1. 
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Gestures 

  

CADDIAN A carry 

Semantics start_comm carry 

Gestures 

  

 A boat 

Semantics start_comm boat 

Gestures 

  

CADDIAN A here 

Semantics start_comm come_here 

Gestures 

 

 

CADDIAN ∀  

Semantics end_comm  

Figure 5.1 – Gestures, CADDIAN symbols and semantics of mission “Carry-to-boat” 

 

2 1 

3 4 

5 6 
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 6 Conclusions 

 

This deliverable has described the design and implementation of  several buddy tasks from 
the algorithms to the implementation and results.  

By the time of writing this document, the tasks were already tested in water separately 
(except Carry-to-boat) however not as a system. The whole system was tested in simulation 
in the Software Integration week in May, Zagreb. 

Further testing and integration will be carried out as preparation and as part of the trials of 
October 2016, Biograd Na Moru, Croacia, where the system will be validated by and properly 
tuned for professional divers. 
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