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1. OUTLINE	OF	THE	DELIVERABLE	

This	 deliverable	 documents	 the	 development	 of	 neuronal	 network	 algorithms	 for	 diver	 behavior	
interpretation.	Physiological	data	–	breath	rate	and	heart	rate	–	and	motion	rate	data	were	combined	
to	train	algorithms	for	the	prediction	of	the	diver’s	internal	state	in	terms	of	high/middle/low	levels	
of	pleasure,	arousal	and	control.	 In	addition,	the	motion	data	 is	used	for	accurate	pose	estimation.	
The	 resulting	 algorithms	 are	 integrated	 in	 the	 DiverControl	 Center	 for	 real	 time	 diver	 behavior	
supervision.		

2. BREATHING	THROUGH	A	REGULATOR	
	
Aim:	Comparing	breathing	patterns	with	and	without	a	regulator	
	
Experiment:	We	 collected	 data	 from	 15	 participants	 –	 7	 women	 (mean	 age:	 25.0yrs)	 and	 8	 men	
(mean	age:	29.1yrs)	–	with	a	breathing	belt	while	they	breathed	regularly	in	an	upright	position	with	
and	 without	 the	 regulator	 for	 3	 minutes	 each.	 Participants	 watched	 a	 neutral	 stimulus	 in	 both	
conditions.		
	

	
		

	

	

	

	

	

Results:	Breathing	with	a	regulator	(WR)	and	free	breathing	(WOR)	are	very	similar.	The	form	of	the	
breathing	curves	is	unaffected,	as	are	speed	of	inhalation	and	exhalation,	turbulence	and	amplitude.		
However,	 the	 rate	of	 breathing	was	 significantly	 lower	when	breathing	 through	a	 regulator	 (Mean	
breath	rate	WR:	11,30	breaths	per	minute;	WOR:	14,48	breaths	per	minute;	paired	t-test:	t	=	-3,809;	
p	=	0,003).	In	addition,	breath	rate	varies	between	individuals:	breath	rate	WR	correlates	with	breath	
rate	WOR:	r	=	0,617,	p	=	0,043).	

Breathing	 through	 a	 regulator	 affects	 heart	 rate:	 It	 changes	 more	 quickly	 (WR:	 3,27;	 WOR:	 2,61,	
paired	 t-test:	 t	 =	3,359;	p	=	0,00),	 and	we	 find	 that	 turbulence	 is	 lower	when	breathing	 through	a	
regulator	 (WR:	0,546;	WOR:	0,815;	paired	t-test:	 t	=-2,896;	p	=	0,016).	On	a	physiological	 level	 this	
might	 suggest	 that	 the	 organism	 reaches	 an	 upper	 threshold	 of	 possible	 performance	 when	
breathing	 through	a	 regulator.	 	 In	normal	 circumstances,	physiological	 variables	 such	as	heart	 rate	
tend	 to	 be	 irregular	 as	 a	 result	 of	 constant	 adaption	 to	 changing	 internal	 and	 external	 stimuli.	
Breathing	and	heart	 rate	are	a	 chaotic	dynamical	 system	 -	when	 the	physiological	 system	 is	under	
pressure	it	reaches	its	limits	to	adapt	to	external	circumstances	and	becomes	more	regular.	We	also	
calculated	the	correlation	between	breath	rate	and	heart	rate	using	Granger	probabilities:	Changes	in	
breathing	 seem	 to	 trigger	 changes	 in	 heart	 rate.	 We	 will	 use	 this	 measure	 to	 predict	 the	 diver’s	

Figure	2-1	Breathing	patterns	without	and	with	a	regulator	
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physiological	stress.		

	

	

	
	
	
	
	
	
	

Figure	2-2	Heart	rate	patterns	without	and	with	a	regulator	
	 	

	

2.1. DYNAMIC	FEATURES	OF	TIME	SERIES	
	
The	data	from	this	experiment	were	also	used	to	develop	dynamic	descriptors	of	time	series	for	later	
statistical	analysis	In	order	to	extract	relevant	information	from	physiological	and	motion	time	series	
data,	 we	 need	 parameters	 that	 reflect	 the	 dynamic	 nature	 of	 the	 data.	 Grammer	 et	 al	 (1999)1,	
Grammer	 et	 al	 (2003)2	 and	 Koppensteiner	 and	 Grammer	 (2010)3	 developed	 several	 measure	 that	
allow	the	description	of	 such	dynamic	 features.	 In	 the	 following	segment	 these	parameters	will	be	
defined.		
	
Peak	 detection:	 	 We	 used	 a	 peak	 detection	
algorithm	 developed	 by	 Billauer	
(ttp://billauer.co.il/peakdet.html)	and	converted	 to	
python	 by				
(https://gist.github.com/endolith/250860).		
	
Rate:	 Both	 heart	 rate	 and	 breath	 rate	 form	 the	
basis	for	the	calculation	of	further	parameters.	The	
rate	 is	 calculated	 in	 breaths	 per	 minute	 and	
heartbeats	 per	 minute	 respectively	 by	 dividing	 60	
by	 the	difference	between	 two	peaks	measured	 in	
seconds.	
	
The	 following	 parameters	 are	 computed	 for	
overlapping	 subsets	 of	 the	 entire	 time	 series	
spanning	 35	 seconds,	 yielding	 a	 continuous	

																																																													
1	Grammer,	K.,	Honda,	M.,	Juette,	A.,	&	Schmitt,	A.	(1999).	Fuzziness	of	nonverbal	courtship	communication	unblurred	by	
motion	energy	detection.	Journal	of	personality	and	social	psychology,	77(3),	487.	
2	Grammer,	K.,	Keki,	V.,	Striebel,	B.,	Atzmüller,	M.,	&	Fink,	B.	(2003).	Bodies	in	motion:	A	window	to	the	soul.	In	Evolutionary	
aesthetics	(pp.	295-323).	Springer	Berlin	Heidelberg.	
3	Koppensteiner,	M.,	&	Grammer,	K.	(2010).	Motion	patterns	in	political	speech	and	their	influence	on	personality	ratings.	
Journal	of	Research	in	Personality,	44(3),	374-379.	
	

Figure	1-3	peak	detection	algorithm	
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parameter	for	the	entire	duration	of	the	complete	time	series.		
	
	
Amplitude:	 We	 defined	 measure	 of	 amplitude	 both	 for	 heart	 rate	 and	 breath	 rate	 as	 well	 as	
breathing	pattern.		
	
If	the	time	series	subset	starts	with	a	maximum,	amplitude	is	calculated	as	follows,	
	

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
1
2𝑛

 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!
+ (𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 + 1 !! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚)	

	
If	the	time	series	subset	starts	with	a	minimum,	the	calculation	changes	to:	
	

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
1
2𝑛

 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!
+ (𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖 + 1 !! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚)	

	
where		

𝑛 = 𝑀𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎 − 1 .	
	
Amplitude	on/off:	
	
The	amplitude	of	the	inhalation	or	the	increase	in	heart	rate	and	breath	rate	respectively	is	defined	
as	follows:	
If	the	first	maximum	in	the	time	series	subset	precedes	all	minima,	the	calculation	goes	as	follows:		
	

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!" =  
1
𝑛

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!

	

	
If	the	first	minimum	precedes	all	maxima,	this	changes	to:		
	

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!" =  
1
𝑛

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!

	

	
	
The	variable	amplitude_off	describes	 the	amplitude	of	exhalation	and	a	decrease	 in	breath	 rate	or	
heart	rate	respectively.		
	
If	the	time	series	subset’s	first	maximum	precedes	the	first	minimum,	it	is	calculated	as	follows:	
	

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!"" =  
1
𝑛

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!

,	

	
if	the	minimum	comes	first	this	changes	to:	
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𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!"" =  
1
𝑛

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖 + 1 !!  𝑚𝑖𝑛𝑖𝑚𝑢𝑚
!

!!!

,	

	
For	all	calculations	of	amplitude,		
	

𝑛 = 𝑀𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎 − 1 .	
	
Curve	length:	
	
The	curve	length	is	calculated	as	follows	
	

𝐶𝑢𝑟𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =  
1 +  𝑑𝑎𝑡𝑎 𝑖 − 𝑑𝑎𝑡𝑎 𝑖 − 1 )!!!

!!!
𝑛

	

	

𝐶𝑢𝑟𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =  
1 +  (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠)!!

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
	

Speed:		
The	variable	speed	is	used	to	describe	the	rate	of	change	for	breathing	patterns	as	well	as	breath	rate	
and	heart	rate.		
	
If	the	time	series	subset	begins	with	a	maximum,	the	speed	is	calculated	as	follows:	
	

𝑠𝑝𝑒𝑒𝑑 =
1
2𝑛

∗  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

+
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 + 1 !! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 + 1 !! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 	

	
If	the	subsets	begins	with	a	minimum,	the	calculation	changes	to:	
	

𝑠𝑝𝑒𝑒𝑑 =
1
2𝑛

∗  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

+
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 + 1 !! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑖 + 1 !! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 	

	
For	both	cases	n	is	defined	as	follows:		
	

𝑛 = 𝑀𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎 − 1 	
	
Speed	on/off:	The	speed	of	 inhalation	and	exhalation	may	differ	and	similarly	 the	changes	 in	heart	
rate	 may	 be	 of	 unequal	 speed	 depending	 on	 whether	 the	 heart	 rate	 is	 decreasing	 or	 increasing.	
Because	of	this	we	computed	the	speed	of	change	in	these	parameters	for	inhalation/exhalation	and	
decreasing/increasing	heart	rate	respectively.		
	
Speed	on	describes	the	speed	of	inhalation	or	increasing	heart	rate	or	breath	rate.	It	is	computed	as	
follows:	

If	the	timeseries	starts	with	a	maximum,	
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𝑠𝑝𝑒𝑒𝑑!" =
1
𝑛
∗  

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 + 1 !! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 + 1 !! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

	

	
If	the	timeseries	subset	starts	with	a	minimum,	

	

𝑠𝑝𝑒𝑒𝑑!" =
1
𝑛
∗  

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

	

	
where	𝑛 = 𝑀𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎 − 1	

	
Speed	off	describes	the	rate	of	change	during	exhalation	or	a	decrease	in	heart	rate	or	breath	rate.	
If	time	series	starts	with	max,	it	is	computed	as	follows:	
	

𝑠𝑝𝑒𝑒𝑑!"" =
1
𝑛
∗  

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑  𝑖!! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

	

	
if	time	series	starts	with	min,	the	calculation		changes	to:			

𝑠𝑝𝑒𝑒𝑑!"" =
1
𝑛
∗  

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 + 1 !! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑖!! 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑖 + 1 !! 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

!

!!!

	

	
for	𝑛 = 𝑀𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎 − 1	

	
	
Turbulence	 is	 a	 measure	 of	 irregularity	 in	 time	 series:	 The	 larger	 the	 standard	 deviation	 of	 the	
amplitudes,	the	more	irregular	the	time	series.	We	computed	turbulence	as	follows:		
	

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠

𝑚𝑒𝑎𝑛 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

=

1
𝑛 − 1 ∗  (𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 −𝑚𝑒𝑎𝑛 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)!

!

𝑚𝑒𝑎𝑛 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
.	

		

3. EMOTIONS	–	BREATHING	AND	HEART	RATE		
	
Aim:	Relating	 changes	 in	 physiological	 states	 to	 primary	
and	secondary	emotions	
	
Experiments:		
	
Sample:	We	ran	this	experiment	in	2014	(99	participants,	
50	 women)	 and	 2015	 (91,	 51	 women)	 and	 achieved	 an	
overall	sample	size	of	190	participants.		
	
Methodology:	Our	 approach	 is	 principally	 guided	by	 two	
different	emotion	theories.	Basic	or	primary	emotions	are	

Figure	0-1	Experimental	setup	
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short	events	(4sec)	which	have	discreet	corresponding	facial	muscle	contractions.	The	basic	emotions	
are:	Fear,	Surprise,	Anger,	Happy,	Sad	and	Disgust	(Ekman	and	Friesen,	19714).	The	disadvantage	 is	
that	 they	 rarely	 occur	 as	 pure	 emotions.	 In	 contrast	 secondary	 emotions	 describe	 longer	 lasting	
emotional	 states.	 A	 circumplex	 model	 of	 emotions	 (Russel	 and	 Mehrabian,	 1977)5	 describes	 an	
emotional	space	consisting	of	three	factors:	pleasure/valence,	arousal	and	dominance/control.	Basic	
emotions	then	are	subspaces	in	this	model.	In	this	approach	we	will	first	verify	our	emotion	induction	
techniques	 with	 basic	 emotions	 and	 then	 extend	 the	 model	 to	 the	 Pleasure-Arousal	 Dominance	
model.	
Participants	were	equipped	with	the	breathing	belt	and	heart	rate	sensor	as	well	as	facial	electrodes	
to	measure	facial	muscle	activity.	At	the	start	of	an	experimental	session,	the	participant	sat	down	in	
front	of	a	screen.	On	this	 screen	we	showed	them	seven	movie	clips	chosen	to	elicit	 the	emotions	
anger,	anxiety,	disgust,	happiness,	sadness	and	surprise	as	well	as	one	neutral	clip	 in	a	randomized	
order	 (a	 list	 of	 the	 clips	 is	 detailed	 in	 the	 reports).	 	 After	 each	 clip	 the	 participant	 filled	 in	 a	
questionnaire	 about	 their	 emotional	 state	 (in	 the	 first	 run,	we	 used	 a	 questionnaire	 based	 on	 the	
basic	 emotions	 described	 by	 Ekman,	 in	 the	 second	 run	 we	 asked	 to	 fill	 them	 in	 an	 additional	
Pleasure-Arousal-Dominance/Control	 questionnaire	 (PAD)	 after	 each	 clip).	 From	 this	 dataset	 we	
derived	 after	 elimination	 of	 any	 time	 series	 affected	 by	 technical	 difficulties	 2100	 behaviour	
segments	(heart	rate	and	breathing	pattern	time	series)	of	30	second	length	which	can	be	linked	to	
emotional	states.	
The	facial	muscle	activity	and	emotion	questionnaires	were	used	to	validate	the	emotion	elicitation	
through	movie	clips	as	well	as	the	use	of	the	continuous	PAD	scale.		
	
Results:	
	

	

																																																													
4	Ekman,	P.,	&	Friesen,	W.	V.	(1971).	Constants	across	cultures	in	the	face	and	emotion.	Journal	of	personality	and	social	
psychology,	17(2),	124.	Chicago	
5	Russell,	J.	A.,	&	Mehrabian,	A.	(1977).	Evidence	for	a	three-factor	theory	of	emotions.	Journal	of	research	in	Personality,	
11(3),	273-294.	
	

Figure	2-2	Mean	of	z-scored	breathing	
parameters	for	the	basic	emotions Figure	2-3	Mean	of	z-scored	heart	rate	

parameters	for	the	basic	emotions 
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For	this	analysis	the	original	time	series	from	the	breathing	belt	were	used	and	transformed	into	the	
basic	dynamic	features.	
We	confirmed	that	the	movie	clips	elicited	emotions	–		the	clips	for	anger,	happiness,	sadness		and	
surprise	caused	strong	emotions	of	the	same	nature,	whereas	the	movie	for	anxiety	caused	feelings	
both	of	anxiety	and	of	disgust	(Table	2.1).		
	
In	 addition,	 we	 demonstrated	 that	 the	 discrete	 emotions	 experienced	 by	 the	 participants	 can	 be	
expressed	 in	 terms	 of	 Pleasure,	 Arousal	 and	 Dominance/Control,	 a	 three	 dimensional	 continuous	
model.	
Both	 heart	 rate	 parameters	 and	 breathing	 pattern	 parameters	 differed	 significantly	 between	 time	
series	of	different	emotional	stimuli	(Heart	parameters:	GLM,	Wilk’s	Lambda	=	0.124,	F(43,14)=2.297,	
p	=	0.047,		ηp=0.162;	Breathing	pattern	parameters:	GLM,	Wilk’s	Lambda	=	0.110,	F(43,14)=2.634,	p	
=0.026,	ηp=0.102).		

In	addition,	we	conducted	linear	discriminant	analysis	for	both	experimental	runs	to	classify	
the	breathing	pattern	and	heart	 rate	 time	 series	 according	 to	 the	 stimulus	 the	participant	
had	watched.	 	For	all	emotions,	 the	highest	percentage	of	classified	cases	was	assorted	to	
the	correct	category	(Table	2.2).		
	

Table	2.2	CLASSIFICATION	RESULTS	–	1st	experimental	run	|	2nd	experimental	run	
	 Predicted	Group	Membership:	in	%	
	 Anger	 Anxiety	 Disgust	 Happy	 Sadness	 Surprise	
Anger	 47.4	|	28.2		 17.9	|	20.5	 7.7	|	12.8	 14.4	|	11.5	 11.5	|	9.0	 1.3	|	17.9	
Anxiety	 21.5	|	16.5	 27.8	|	31.6	 6.3	|	8.9	 17.7|	15.2		 24.1	|	7.6	 2.5	|	20.3	
Disgust	 2.5	|	15.0	 6.3	|	10.0	 60.0	|	47.5	 8.8	|	10.0	 6.3	|	8.8	 16.3	|	8.8	
Happy	 17.3	|	12.3	 8.6	|	14.8	 2.5	|	23.5	 53.1	|	25.9	 17.3	|	7.4	 1.2	|	16.0	
Sadness	 16.7	|	15.4	 20.5	|	14.1	 2.6	|		11.5	 11.5	|	9.0	 46.2	|	35.9	 2.6	|	14.1	
Surprise	 1.3	|	11.4	 5.1	|	15.2	 13.9	|	15.2	 8.9	|	10.1	 5.1	|	11.4	 65.8	|	36.7	
Ungrouped	 14.9	|	4.1	 40.5	|	18.9	 2.7	|	12.2	 5.4	|	5.4	 29.7	|	25.7	 6.8	|	33.8	
	
	

3.1. TIME	DELAYED	NEURAL	NETWORKS	AND	THE	RECOGNITION	OF	BASIC	EMOTIONS	FROM	
BREATHING	RATES		

	
The	second	version	of	DiverNet	used	a	pressure	sensor	in	the	regulator.	This	method	does	not	record	
all	 breathing	movements	 directly,	 but	 represents	 a	more	 reliable	method	 of	measuring	 breathing	
rate.	

Table	2.1:	Discrete	primary	emotions	can	be	expressed	in	terms	of	Pleasure-Arousal-Dominance	
Correlations	 Pleasure	 Arousal	 Dominance/Control	
Happiness	 r	=	0.637	(p	<	0.001)	 r	=	0.122	(p	=	0.008)	 r	=	0.132	(p	=	0.004)	
Anger	 r	=	-0.557	(p	<	0.001)	 r	=	0.290	(p	<	0.001)	 r	=	-0.122	(p	=	0.008)	
Anxiety	 r	=	-0.294	(p	<	0.001)	 r	=	0.425	(p	<	0.001)	 r	=	-0.160	(p	=	0.001)	
Sadness	 r	=		-0.448	(p	<	0.001)	 r	=	0.257	(p	<	0.001)	 r	=	-0.032	(p	=	0.487)	
Disgust	 r	=	-0.320	(p	<	0.001)	 r	=	0.365	(p	<	0.001)	 r	=	-0.060	(p	=	0.193)	
Surprise	 r	=	-0.021	(p	=	0.653)	 r	=	0.207	(p	<	0.001)	 r	=	-0.091	(p	=	0.049)	



	

9	
Deliverable	D3.4			
																																																							

FP7	GA	No.611373	
	
	

We	used	 the	SNNS	4.1	 (Stuttgart	Neural	Network	Simulator,	University	of	 Stuttgart)6	 to	 simulate	a	
time	delayed	neural	network	(TDNN)	consisting	of	three	layers.	This	type	of	neural	network	is	able	to	
learn	time	structures	in	data	and	extract	features	translation	invariant.	The	trained	patterns	can	be	
export	as	c-code.	The	organization	of	 the	 input	units	allows	the	manipulation	of	 the	 time	span	the	
network	uses	and	the	number	of	features	it	tries	to	extract.	In	our	case	we	used	12	feature	units	and	
24	time	units	(=	750	input	units).	The	hidden	layer	was	12	X	7	units	and	the	output	layer	consist	six	
units	to	depict	the	emotions.	This	network	structure	was	used	successfully	by	Grammer	et	al	(19997,	
2003)8	for	the	depiction	of	gender	from	walking	data.	Before	training,	the	weights	were	set	randomly	
and	the	learning	rules	used	was	time-delay	back-propagation.		
As	 input	we	downsampled	the	breathing	rates	time	series	 to	10	Hz	and	uses	336	 input	values.	The	
number	of	 learning	patterns	was	n=425,	 test	patterns	were	n=425,	and	verifications	patterns	were	
n=5.	
Unfortunately	it	was	not	possible	to	identify	basic	emotions	–	only	16.24	%	of	all	cases	were	classified	
correctly.	We	 assume	 that	 there	 are	 several	 reasons	 for	 this.	One	 surely	 are	 conceptual	 problems	
with	 emotion	 theories	 using	 discrete	 emotions.	 This	 is	 why	 we	 will	 rely	 in	 the	 rest	 of	 the	
workpackage	on	the	identification	of	emotions	in	a	pleasure-arousal-dominance/control	space.		
	

3.2. TIME	DELAYED	NEURAL	NETWORKS	AND	THE	RECOGNITION	OF	SECONDARY	EMOTIONS:	
PLEASURE	AROUSAL	AND	DOMINANCE	FROM	BREATHING	RATES		

	
In	 order	 to	 find	 out	 if	 it	 is	 possible	 to	 predict	 PAD	 scores	 from	 breathing	 rates	 we	 constructed	 2	
networks	for	each	dimension.	The	architecture	being	basically	the	same	as	in	the	network	above	but	
with	only	three	out	put	units	negative,	neutral	and	high.	
	
These	 networks	 performed	 better	 than	 those	 for	 the	 recognition	 of	 basic	 emotions.	 Pleasure	was	
qualified	 39%	 correctly,	 arousal	 correct	 classification	 38%	 and	 dominance/control	 with	 35%.	 This	
basically	corresponds	to	the	analysis	with	classical	statistical	methods	above.	

4. SECONDARY	 EMOTIONS	 –	 MOTION,	 BREATHING	 AND	
HEART	RATE	

	
Aim:	The	aim	of	this	experiment	was	to	provide	a	large	data	set	of	
motion	 data	 and	 physiological	 data	 in	 combination	 with	 data	 on	
emotional	 state.	This	dataset	was	used	 to	 train	 the	algorithms	 for	
predicting	 the	 divers’	 emotional	 states	 from	 motion	 and	
physiological	patterns.	In	addition,	we	related	the	motion	patterns	
and	physiological	patterns	to	performance	in	a	willpower	task.	
	 	
Experiment:		
	
Sample:	We	collected	data	from	52	participants	who	were	recruited	
on	university	premises	and	via	social	networks,	of	those	data	of	42	

																																																													
6	http://www.ra.cs.uni-tuebingen.de/SNNS/	
7	Grammer,	K.,	Honda,	M.,	 Juette,	A.,	&	Schmitt,	A.	 (1999).	 Fuzziness	of	nonverbal	 courtship	 communication	
unblurred	by	motion	energy	detection.	Journal	of	personality	and	social	psychology,	77(3),	487.	
8	Grammer,	K.,	Keki,	V.,	Striebel,	B.,	Atzmüller,	M.,	&	Fink,	B.	(2003).	Bodies	in	motion:	A	window	to	the	soul.	In	
Evolutionary	aesthetics	(pp.	295-323).	Springer	Berlin	Heidelberg.	

Figure	0-1	Participant	wearing	
DiverNet	on	the	treadmill	
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participants	could	be	used	for	analysis	and	algorithm	training.	The	mean	age	of	the	16	men	was		26.7	
years	(S.D.:	4.5	yrs),	the	26	women’s	was	24.4	years	(S.D.:	3.4	yrs).		
	
Motion	 rate	 calculation:	 	We	 used	 the	 first	 derivative	 of	 the	 changes	 in	 body	 angles	 to	 calculate	
motion	rate	for	each	joint.	Composite	motion	rates	for	the	
upper	body,	the	lower	body	and	the	entire	body	were	the	
respective	sums.		
	
Emotion	experiment:	
The	seven	video	stimuli	described	in	section	4	were	used	to	
elicit	 the	 six	 basic	 emotions	 (anxiety,	 anger,	 disgust,	
happiness,	 sadness,	 surprise)	 and	 a	 neutral	 baseline.	
Participants	 were	 equipped	 with	 the	 DiverNet	 Sensor	
network,	 the	 breathing	 belt	 and	 a	 heart	 rate	 sensor.	 The	
participants	 were	 asked	 to	 select	 a	 comfortable	 walking	
speed	 on	 a	 treadmill.	 When	 they	 were	 ready,	 the	 video	
stimuli	 were	 displayed	 in	 a	 random	 order.	 In	 between	
video	stimuli,	participants	filled	in	a		
Pleasure-Arousal-Dominance/Control	questionnaire	and	completed	a	small	cognitive	task	to	avoid		
spill-over	effects.		
	
Willpower	experiment:	
After	 completion	 of	 the	 first	 experiment,	 participants	 were	 asked	 to	 complete	 a	 short	 breathing	
exercise	after	which	 they	had	 to	avoid	 looking	at	an	attention	grabbing	video	 stimulus	chosen	 in	a	
pre-study	 while	 focusing	 their	 attention	 on	 a	 screen	 saver.	 	 In	 addition	 to	 the	 motion	 data	 and	
physiological	data,	we	scored	the	participants’		gaze	behaviour.		
The	 duration	 and	 frequency	 of	 gazes	 to	 the	 forbidden	 screen	was	 used	 as	 an	 inverse	measure	 of	
willpower.	All	participants	 filled	 in	questionnaires	about	 their	personality,	 their	exercise	habits	and	
other	confounding	factors	that	might	affect	their	motion	patterns.	
	
Results:	
	
Emotion	experiment:		
We	used	linear	discriminant	analysis	to	predict	the	video	stimulus	participants	had	watched	based	on	
the	dynamic	parameters	of	motion	rate,	breath	rate	and	heart	rate.	The	combination	of	these	three	
groups	of	parameters	yielded	good	predictive	results	as	described	in	table	3.1.		
	

Table	3.1	Results	of	Linear	Discriminant	Analysis	
Classification	
results	

Predicted	Group	Membership	
Percentage	of	correct	classification	

Stimulus	 anger	 disgust	 happy	 sadness	 anxiety	 surprise	
anger	 40.0	 10	 13.3	 13.3	 16.7	 6.7	
disgust	 10.7	 50.0	 10.7	 10.7	 7.1	 10.7	
happy	 6.9	 10.3	 55.2	 6.9	 6.9	 13.8	
sadness	 22.2	 3.7	 11.1	 33.3	 22.2	 7.4	
anxiety	 14.8	 11.1	 7.4	 18.5	 37.0	 11.1	
surprise	 6.9	 17.2	 17.2	 13.8	 6.9	 37.9	
	
Willpower	experiment:	

Figure	4-1	Experimental	setup	
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The	 fast	 breathing	 exercise	 was	 associated	 with	 more	 frequent	 and	 longer	 distractions	 from	 the	
willpower	 task	 (gaze	 duration	 to	 the	
distractor	stimulus:	Mann	Whitney	U	=	182,	
p	 =0.45;	 gaze	 frequency	 to	 the	 distractor	
stimulus:	t-test,	t(45)=-2.38,	p	=0.21).		
We	 also	 found	 that	 a	 slow	 breathing	
exercise	 increased	 heart	 rate	 variability	 (t-
test:	 t	 =	 6.30,	 p	 >	 0.001),	 whereas	 fast	
breathing	 decreased	 it	 (-2.955,	 p	 =	 0.004),	
especially	 in	 the	 low	 frequency	 band	 (0.04-
015Hz).	
	
In	 general,	 these	 results	 support	 the	 hypothesis	 that	 slower	 breathing	 and	 a	 greater	 heart	 rate	
variability	are	connected	to	self-control	and	the	ability	to	avoid	distractions	during	cognitively	taxing	
tasks.		
However,	 we	 found	 several	 mediating	 factors:	 greater	 may	 increase	 the	 ability	 to	 withstand	
distractions	 (Fig.	3.3)	when	breathing	quickly,	but	decrease	 it	 if	 the	participant	breathes	slowly.	 	 In	
addition,	 the	 time	 distance	 to	 the	 last	 meal	 was	 associated	 with	 a	 greater	 susceptibility	 to	
distractions	(duration	of	gaze:	R=	0.35,	F	(1,36)=	5.02,	p	=	0.031).		

Figure	3-3	Success	at	willpower	task	for	participants	with	
above	and	below	average	neuroticism	scores 

Figure	3-4	Breath	rate,	heart	rate	and	motion	rate	raw	data 
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4.1. MULTILAYER	PERCEPTRON:	CLASSIFICATION	OF	SECONDARY	EMOTIONS	FROM	COMBINED	
SOURCES.	

	
One	 disadvantage	 of	 TDNNs	 is	 that	 they	 will	 become	 very	
complex	 for	 training	 with	 combined	 data	 sources,	 like	 heart	
rate,	breathing	rate	and	motion	rate.		Another	drawback	is	that	
folding	can	not	be	used	in	this	package.	The	performance	of	the	
network	might	 depend	on	 the	 randomly	 selected	 learning	 and	
testing	files	–	but	this	process	can	not	be	automatized	and	has	
to	be	done	by	hand.	Thus	we	tried	a	different	approach.		A	first	
multilayer	perceptron	was	developed	and	tested	in	SPSS.		
	
As	input	data	we	used	the	ten	dynamic	features	for	breath	rate,	
heart	rate	and	motion	rate	 (n=130	 	 learning	data,	n=56	testing	
data).	The	perceptron	thus	had	30	input	units	and	a	layer	of	20	
hidden	 units,	 nine	 output	 units	 for	 pleasure,	 arousal	 and	
dominance	 (each	 high,	 neutral	 and	 negative).	 Activation	 rule	
was	 TanH.	 This	 approach	 proved	 fairly	 successful	 with	
classification	 rates	 reaching	 from	 60	 %	 (dominance/control	
high)	to	only	18%	(pleasure,	neutral).	Overall	classification	score	
was	40	%.		
	

Figure	3-5	This	figure	shows	a	
MLP	Network	generated	in	SPSS.	
There	are	30	input	neurons	which	
hold	the	dynamic	information	
from		breathing	rate,	heart	rate	
and	motion	rate.	20	hidden	units	

are	activated	by	a	thanH	
function.	The	output	units	denote	

three	states	(high.-neutral-
negative	for	each	of	the	three	
axes	of	the	circumplex	model.	

Figure	3-6	a,b,c	ROC	curves	
showing	the	performance	of	
decisions	in	the	MLP	for	all	three	
dimensions	of	the	PAD	model.	
They	clearly	exceed	chance	rate.	
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This	 first	 approach	 then	was	 continued	 in	 scikit-neuralnetwork	 	 0.7	 in	 a	 Python	 environment.	 This	
allows	 to	 search	 for	 optimal	 networks	 by	 varying	 learning	 algorithms	with	 randomized	 number	 of	
hidden	 layers	 and	 units	 and	 the	 use	 of	 fold	 approaches	 were	 the	 training	 and	 testing	 data	 are	
selected	 randomly	 and	 used	 to	 test	 new	 networks	 –	 this	 allows	 to	 find	 the	 optimal	 network	 and	
assess	 the	 real	 performance.	 The	 classification	 rates	 are	 again	 in	 the	 same	 magnitudes	 Pleasure	
(0.49).	arousal	(0,43)	,	dominance/control	(0.43)	.The	figures	indicate	that	the	results	are	symmetric	–	
this	means	that	the	classification	always	is	highest	for	the	correct	classification.	

5. UNDERWATER	EXPERIMENTS	

Aim:	Collecting	data	from	divers	performing	a	wide	range	of	tasks.	This	
data	 was	 used	 to	 test	 the	 algorithms	 for	 internal	 state	 predictions	
obtained	from	the	dry	land	data	sets.	
	
Experiments:	Data	collections	took	place	in	the	Y-40	pool	in	Padova.	
	
Sample:	

Table	4.1.	Sample	description	
Data	collection	 Month/Year	 Total	

participants	
(mean	age)	

Total	Women	
(mean	age)	

Total	Men		
(mean	age)	

Padova	1	 06/2014	 16	(45,87	yrs)	 4	(39,25	yrs)	 12	(48,08	yrs)	
Padova	2	 02/2015	 19	(45,16	yrs)	 8	(46,75	yrs)	 11	(44,0	yrs)	
Padova	3	 06/2015	 21	(45,60	yrs)	 17	(44,1	yrs)	 4	(52,0	yrs)	
All	 -	 56	(45,53	yrs)	 29	(44,34	yrs)	 27	(47,0	yrs)	
		
This	data	 set	 yielded	251	 time	 series	 segments	of	 35	 seconds	 length	 that	 could	be	used	 for	 TDNN	
training	and	testing.		
	
Tasks:	
The	divers	completed	the	following	tasks:	

• Breathing	underwater/above	water	
• Decompression	stop	
• Collecting	objects	
• Swimming	fast/slow	
• Moving	up	and	down	between	markings	
• Free	behaviour	

	
In	 addition,	 divers	 were	 asked	 to	 fill	 in	 Pleasure-Arousal-
Control	 questionnaires	 to	 record	 how	 they	 felt	 in	 between	
tasks.	 T-postures	 were	 used	 for	 calibration	 of	 the	 motion	
data.		
	
	
	
	

Figure	4-1	Diver	wearing	
DiverNet	

Figure	4-1	Diver	in	T-posture	

Figure	4-2	Diver	using	the	tablet	
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5.1. TDNN	AND	MULTILAYER	PERCEPTRON	(MLP)	FOR	DIVER	EMOTION	PREDICTION	
	
The	 data	 we	 used	 in	 this	 analysis	 were	 35	 seconds	 before	 filling	 out	 the	 PAD	 questionnaire	 and	
motion	 rates	 were	 calculated	 as	 first	 derivate	 from	 all	 body	 joints	 in	 a	 compound	 measure.	 We	
trained	 	 a	 TDNN	with	motion	 rates	 and	PAD	data.(Learning	n=	170,	 Testing	n=50,	 validation	n=	29		
patterns.	
The	 overall	 correct	 classification	 for	 pleasure	 was	 30%	 correct	 for	 Arousal	 42	 %	 and	 for	
dominance/control	42%	.	The	MLP	applied	to	the	same	data	brought	better	results.	Pleasure	(47%).,	
Arousal	51%)	and	Dominance/Control	%51%)	
	

	
5.2. DIVER	POSE	ESTIMATION	

	
The	reconstructed	diver	posture	obtained	from	DiverNet	is	used	for	automatic	activity	classification,	
where	the	system	would	know	what	the	diver	is	doing	even	without	a	human	operator	observing. 
Two	approaches	are	currently	being	tested.	The	first	one	uses	a	Dynamic	time	warping	algorithm	to	
align	the	live	data	with	recorded	training	data.	 It	classifies	current	activity	based	on	the	distance	to	
aligned	 training	 set,	 choosing	 the	 activity	 with	 the	 smallest	 distance.	 This	 method	 showed	 good	
results	 with	 static	
postures,	 but	 is	 not	 as	
appropriate	 for	 dynamic	
activity	 which	 is	
important	for	most	diving	
activities	 as	 it	 cannot	
cope	with	 huge	 variances	
in	 speed	 in	 performing	
the	 same	 tasks.	 Tests	
were	 conducted	 with	 7	
poses	 shown	 in	 Figure	 4-
5.	 Confusion	 matrix	 for	
initial	 tests	 is	 shown	 in	
Figure	4-6.	 

 
Fig.	4-5		Poses	used	in	initial	static	classification	tests	with	Dynamic	time	warping 

Fig.	 4-4	 Classification	 performance	 plots	 of	 all	 three	 dimension	 of	 three	 networks	 for	 each	
dimension	 in	 the	 PAD.	With	 the	 exception	 of	 control	 they	 all	 symmetrical,	 i.e.	 the	 score	 for	 the	
original	values	is	the	highest.		
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Fig4-6		Confusion	matrix	for	Dynamic	time	warping	

tests 
 
The	 second	 approach	 that	 is	 currently	 being	
tested	 are	 artificial	 neural	 networks.	 Inputs	 to	
the	network	are	calculated	joint	orientations	of	
the	 diver,	 for	 both	 current	 and	 past	 frames.	
This	 allows	 time	 awareness	 and	 recognition	 of	
dynamic	 activity.	 Neural	 network	 models	 are	
currently	 being	 assessed	 to	 find	 a	 good	
structure	 for	our	 task.	A	simple	and	shallow	 (1	
hidden	 layer)	 feed-forward	neural	network	has	
been	tested	so	far,	and	has	shown	good	results	
on	 a	 small	 dataset	 with	 static	 poses.	 Provided	
with	 reasonably	 good	 reconstruction	 and	 joint	
orientation	 estimate	 from	 DiverNet,	 the	
algorithm	works	very	well.	However,	more	data	
needs	 to	 be	 collected	 to	 try	 to	 also	 cope	with	

the	reconstruction	errors.	As	for	now,	some	improvement	was	made	with	artificial	data	generation.	
The	 artificial	 training	 data	 was	 created	 by	 adding	 a	 Brownian	 motion-inspired	 error	 to	 existing	
training	data.	
	
The	tests	conducted	with	dynamic	poses	have	shown	even	stronger	need	for	more	data.	Even	with	
relatively	simple	networks,	it	was	hard	to	prevent	the	network	from	overfitting.	Initial	results,	with	a	
single	hidden	layer	network,	and	using	current	frame,	
and	 three	past	 frames	with	0.5s	 sampling	 time,	have	
resulted	 in	 achieving	 100%	 in	 the	 test	 set,	 but	 only	
80%	 in	 the	validation	set,	 showing	severe	overfitting.	
After	 recording	 some	more	data	 and	 adding	 artificial	
training	 data,	 the	 results	 have	 improved	 slightly,	 to	
99%	recognition	rate	on	test	set	and	88%	on	training	
set.	This	still	suggest	quite	a	bit	of	overfitting,	but	is	an	
improvement.	 The	 confusion	 matrix	 is	 shown	 in	 the	
figure	2.5.3.	

	
Fig.	4-7	Confusion	matrix	for	Artificial	Neural	Networks	

based	dynamic	activity	recognition 

	
	

6. DIVER	CONTROL	ARCHITECTURE	
	
We	developed	a	program	which	allows	real	time	play	back	of	divernet	data	synchronized	with	video.	
This	was	used	to	test	various	algorithms	and	to	segment	divernet	data	for	statistical	processing	and	
neural	 network	 development.	 It	 is	 necessary	 to	 note	 that	 this	 was	 a	major	 challenge	 for	 us.	 This	
program	 is	 the	prerequisite	 for	any	development	we	have	done	on	 the	diver	data.	Features	of	 the	
program	include:	
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• Real	time	playback	of	divernet	data	synchronized	with	video	and	behaviour	codes	
• Calculation	of	dynamic	time	series	features	of	heart	rate,	breath	rate	and	freely	combinable	

motion	rates	(i.e.	whole	body	or	only	feet	etc)	
• Integration	of	questionnaire	data	
• Various	filters	on	time	series,	Fourier	analysis	and	histograms	for	artefact	detection	
• Event	detection	in	time	series	
• Export	of	any	data	segmented	for	behaviours,	questionnaires	etc.	
• Anomaly	detection	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Anomaly	detection:		
From	 the	 data	 in	 the	 first	 experiments	 in	 Padua	 we	 developed	 a	 general	 procedure	 for	 the	
identification	 of	 unusual	 events	 in	 the	 times	 series.	 We	 implemented	 a	 symbolic	 aggregation	
approximation	algorithm	–	SAX	–(Keogh	et	al.	20059)	which	allows	us	to	detect	anomalies	and	motifs	
in	real	time	with	minimal	assumptions.		SAX	does	dimensionality	reduction	and	indexing	with	a	lower	
bounding	 distance	 measure.	 The	 method	 is	 supposed	 to	 be	 equal	 if	 not	 superior	 to	 well-known	
representations	 such	 as	 Discrete	Wavelet	 Transform	 (DWT)	 and	 Discrete	 Fourier	 Transform	 (DFT),	
while	requiring	less	storage	space.		

	
	
	
	
	
	
	
	

																																																													
9	Keogh,	E.,	 Lin,	 J	 and	Fu,	A.	 (2005):	HOT	SAX:	Efficiently	Finding	 the	most	unusual	 time	series	 subsequence.	
Proceedings	of	the	Fifth	IEEE	International	Conference	on	Data	Mining	(ICDM’05)	1550-4786.	

Figure	6-2	PAA	representation	of	time	series	segment.	The	alphabet	is	abcd	and	represents	4	bins	of	
equal	probability.	The	time	series	is	then	regrouped	into	4	words:	ccbc,	ccbc,	adbd,	bccb	

c
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c c

b

c c
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b b
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c
b

d
c

Figure	6-1	Screenshot	of	the	DiverNet	player	
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In	addition,	the	representation	allows	us	to	avail	of	the	wealth	of	data	structures	and	algorithms	in	
bioinformatics	or	text	mining,	and	also	provides	solutions	to	many	challenges	associated	with	current	
data	mining	tasks.	The	procedure	consist	of	three	simple	steps:		
	
7. z-score	transformation	of	a	time	series	
7. Piecewise	 Aggregate	 Approximation	 of	 time	 series	 (PAA).	 The	 PAA	 transformation	 is	 the	

discretization	of	the	time-series.	The	efficiency	can	be	controlled	by	calculating	the	distance	
between	the	PAA	representation	and	the	original	time	series.	This	method	also	can	be	used	
to	 determine	 alphabetsize	 (how	 many	 values	 are	 used	 for	 time	 series	 transformation),	
binsize		(how	many	data	points	are	aggregated	in	PAA)	and	wordsize	(how	many	values	form	
a	word.	

7. The	 PAA	 then	 is	 transformed	 into	 SAX	 	 letters	 and	 this	 is	 implemented	 in	 a	 way	 which	
produces	 symbols	 corresponding	 to	 the	 time-series	 features	 with	 equal	 probability.	 The	
extensive	 and	 rigorous	 analysis	 of	 various	 time-series	 datasets	 available	 to	 the	 original	
algorithm’s	authors	has	shown	that	the	values	of	z-normalized	time-series	follow	the	Normal	
distribution.	By	using	its	properties	it’s	easy	to	pick	equal-sized	areas	under	the	Normal	curve	
using	 lookup	tables	 for	 the	cut	 lines	coordinates,	 slicing	 the	under-the-Gaussian-curve	area	
and	assign	a	letter	to	a	value.	

	
The	 following	 graph	 shows	 the	 results.	 On	 the	 x	 –axis	 are	 the	 video	 frames,	 the	 blue	 line	 is	 the	
motion	rate,	the	green	line	is	the	simple	distance	and	the	red	line	represents	the	Euclidian	distance	
of	a	word	to	all	other	words	 in	 the	window.	As	you	can	see	 the	 t-postures	 from	the	behaviour	 file	
which	are	presented	as	vertical	red	lines	all	fall	on	depressions	in	the	similarity.	This	method	allows	
the	 identification	 of	 certain	 behaviours	 and	 anomalies	 from	 motion	 rate	 and	 physiological	
measurements.		
	
For	the	detection	of	anomalies	in	the	string	sequence	we	used	the	sequitur	algorithm	developed	by	
Nevill-Manning	and	Witten	(1997)10.	This	algorithm	constructs	a	hierarchical	grammar	by	substituting	
repeated	 phrases	 in	 a	 series	 with	 rules	 and	 produces	 an	 exact	 representation	 oft	 the	 sequence.	
Phrases	which	can	not	be	substituted	in	the	rule	scheme	than	are	anomalies.	
Motion	rates	from	divers	form	a	special	case	–	because	the	repetition	rates	are	high	only	for	special	
cases	 like	swimming.	 In	our	case	the	experiment	provides	a	collection	of	anomalies,	 like	T-posture,	
fast	swimming,	tablet	use	etc	

	

																																																													
10	Nevill-Manning,	Craig	G.,	and	Ian	H.	Witten	(1997).	Identifying	hierarchical	structure	in	sequences:	A	linear-
time	algorithm.	J.	Artif.	Intell.	Res.(JAIR)	7	(1997):	67-82.	
	
	

Figure	6-1	SAX	applied	to	one	single	dive.	SAX	detects	14	anomalies	–	two	of	them	are	situated	in	Left-Right	swim	
slowly.		
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Motion	rate	is	calculated	from	the	first	derivate	of	joint	values.	The	results	show	that	this	is	possible	
in	principle	–	but	in	our	view	it	could	be	applied	to	the	highly	repetitive	breathing	curves	and	where	it	
could	be	used	to	survey	the	functioning	of	the	pressure	valve.	
	
Final	implementation	of	diver	control	module	
	
The	 flowchart	 depicts	 the	 final	 implementation	we	 suggest	 for	 a	 diver	 control	 program:	 There	 are	
three	main	data	sources	(heart	rate,	breath	rate	and	motion	rate)	 .All	 three	data	streams	have	the	
basic	dynamic	features	calculated	over	a	30	sec.	window.	These	data	are	fed	into	the	respective	MLP.	
The	determination	of	risk	from	heart	rate	and	breathing	is	not	trivial,	because	both	depend	from	age	
of	 the	diver	and	task.	The	most	promising	approach	 is	 to	have	a	 thirty	second	breathing	and	heart	
rate	recording	at	the	beginning	of	the	dive	under	resting	conditions	and	then	determine	the	outliers	
as	a	function	of	the	mean	and	the	standard	deviation	of	the	resting	period.	
We	also	suggest	to	generate	a	fuzzy	logic	system	which	determines	a	general	risk	in	an	additive	way.	
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Fig	5-4	Flowchart	of	suggested	control	parameters	and	variables	for	diver	control.	The	flowchart	outlines	the	
procedures	 which	 are	 necessary	 to	 monitor	 the	 diver.	 We	 have	 implemented	 heart	 rate	 and	 heart	 rate	
anomaly	based	on	age	data,	the	same	is	done	for	breath	rates.	Red	 light	depicts	abnormal	rates.	We	also	
used	motion	rates	in	this	system	and	pleasure,	arousal,	dominance/control	values	from	the	neural	networks.	
We	plan	to	implement	a	Fuzzy	logic	module	for	decision	making	if	the	diver	mission	is	critical	or	not.		
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7. CONCLUSION	
	
This	 deliverable	 documents	 the	 successful	 development	 of	 algorithms	 for	 diver	 behaviour	
interpretation.	Based	on	dry	land	experiments	(section	2-4)	and	experiments	with	divers	(section	5)	
neural	 networks	 were	 designed	 to	 predict	 diver	 posture	 and	 the	 diver’s	 psychological	 state	 from	
diver	 motion,	 breath	 rate	 and	 heart	 rate	 (variables	 are	 described	 in	 section	 2).	 In	 addition,	 we	
developed	software	to	monitor	the	diver’s	state	in	real	time	and	to	display	relevant	information	to	a	
surface	crew.	The	results	of	this	deliverable	will	be	tested	in	trials	in	October	2016.			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


