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1 Outline of the deliverable 
 
This deliverable describes the design, implementation and validation of a Petri net-based high level mission 
control layer for the robotic agents, devoted to the planning, execution and supervision of the cooperative 
action that have to be undertaken by the robotic platforms in order to support diver operations. The 
deliverable is mostly related to the results obtained in WT3.3. 
The deliverable reports the general description of the mission controller architecture and its main 
characteristics with respect of state tracking and inter-task conflict resolution. Then the customization of 
the architecture with respect of the envisioned validation experiment is described, as well as the 
integration phase with the robotic platforms’ control systems and gesture recognition modules. 
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2 Mission controller architecture 
 
The CADDY mission control system is a modular framework designed and developed with the aim of 
managing the state tracking, task activations and reference generation that fulfills the requirements in 
order to support the diver operations. 
As depicted in Fig. 1, the mission controller acts as a cognitive planning and supervision system taking as 
input the decoded gesture sequence executed by the diver, in turn generating proper task activation 
actions in such a way to trigger the required capabilities needed to provide the requested support. 
 

 
Fig.1. Main modules of high-level CADDY functionalities 

 
The main goal of the mission control module is to abstract the robotic capabilities at logical level and 
manage the activation of the real robotic primitives, while at the same time resolving possible conflicts 
that may arise when selecting the robotic capabilities to be triggered. 
In the CADDY logical framework, three classes of executable units have been identified and shown in Fig. 
2: 
functional primitives represent the macro-actions that the robotic platform has to carry out in order to 
support the diver operation and that are strictly related to the current functional mode (slave, guide, 
observer); 
high-level logical tasks are the interface between the primitives and the operative task provided by robot. 
This logical task set is common in the overall architecture and will provide the required functionalities 
activating the proper low-level tasks that are currently made available by the employed robotic platform; 
low-level robotic tasks are the actual implemented autonomous functionalities on the target robot, e.g. 
speed regulators, heading and depth controller, etc. Depending on the low-level task availability, the 
CADDY compliant mission control system will properly select which high-level functionalities can be 
activated allowing, in turn, the enabling of the required primitives to fulfil the mission operations. 
 
The primitives are linked to the support action that the diver can require by means of the gesture-based 
language: once a gesture or a complex sequence of gestures is recognized and validated, it is sent to the 
mission controller that will activate the proper primitive to start the support operation. 
Each primitives activates as set of high-level tasks that represent the logical functionalities required to 
fulfill the required operation. 
The high-level logical tasks activate in turn a set of robotic tasks which enable and execute the physical 
operations on the real robot devoted to the support of the diver operations. 
 
As an example, Fig. 3 reports the case of activation of the "Follow me" primitive; such a primitive requires 
the system to turn on the following functionalities: "go_to_depth" to reach and maintain a desired depth 
(i.e. the same of the diver); "go_to_2D_point_fa" is the procedure to track a 2D point (the diver position) 
for fully-actuated (fa) platforms, that generates proper horizontal velocities for point tracking; 
"turn_towards" enabling the auto-heading capability to always look towards the diver. 
In turn, each of the high-level task has to be linked with one or more low-level tasks in order to physically 
execute the required actions: 
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- "go_to_depth" requires the activation of a depth_controller; 
- "go_to_2D_point_fa" requires the activation of surge and sway velocity regulators; 
- "turn_towards" enables the auto-heading controller. 
 

 
Fig. 2. Task classification in the CADDY logical framework 

 
The logical links between the high- and low-level layers are set on the basis of the input/output variables: 
the output generated by a high-level task is the input for one or more low-level tasks, e.g. 
"go_to_2D_point_fa" generates the u and v speed reference signals that feed the low-level speed 
controllers. 
 
If, as a second exemplificative case, an under-actuated platform is employed, it implies in turn that the 
"sway_speed" controller is not available (due to the under-actuation, e.g. of a rudder based vehicle). The 
unavailability of this latter low-level task reflects on the inhibition of the "go_to_2D_point_fa". Anyway to 
fulfil the "follow me" primitive requirements, the system can automatically swith to the 
"go_to_2D_point_ua" that can drive the robotic platform towards the desired point generating proper 
surge velocity and heading signals. The activation of the "go_to_2D_point_ua" task goes in conflict with 

the "turn_towards" one, given the generation of the  reference signals by both the tasks. Detecting this 
logical conflict, as depicted in Fig. 4, the system deactivates the execution of the "turn_towards" (that, by 
user definition, has a lower priority with respect to the "go_to_2D_point_ua" in relation to the "follow 
me" primitive). 
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For the automatic selection, activation and inter-task conflict management, a Petri net based execution 
control system has been developed. The system is configured by means of a set of configuration files that 
specify, on one side, the capabilities of the robot in terms of autonomous tasks and, on the other side, the 
set of high level functionalities that the CADDY system has to provide for the diver support. A real-time 
Petri net engine models the logical interconnections among the tasks and primitives and, depending on 
the specific actions commanded by the diver, automatically handle the activation/deactivation of the 
proper task sets. 
 

 
Fig. 3. Example of "follow me" primitive activation for fully-actuated robot 
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Fig. 4. Example of "follow me" primitive activation for under-actuated robot and inter-task conflict management 

 
 
 
Each mission controller related task is logically represented by a simple Petri Net which define the state of 
activation of the task. As shown in Fig. 5, two places represent the two state of the task: idle and running. 
Two other places represent the start and stop events, while two transitions define the task net evolution 
rules. The idle place is initially marked, representing an initial condition of deactivated task. 
 

 
Fig. 5. Basic task representation in the Petri Net based mission controller 

 
The Petri Nets representing the tasks are then connected through suitable arcs joining the running state 
of a logical layer to the start place of the following layer, as depicted in Fig.6. In such a way a cascade 
activation of the task chain is carried out. 
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Fig. 6. Cascade-layer tasks connection 

 
With such a proposed scheme, two main issues remain to be handled: the mutual exclusive activation of 
the functionality primitives and the conflict management in high- and low-level tasks execution. 
For the issue of primitives mutual exclusion it is sufficient to insert an additional control place at primitives 
level, in such a way that only one single primitive can switch to running state, as shown in Fig. 6. 
The inter-task conflict issue is raised from the fact that different tasks can generate output for the same 
output variable; the abovementioned example shows that the activation of the two high-level tasks 
“turn_towards” and “go_to_2D_point_ua” bring to a conflict due to the generation of the same output 

variable “”. To resolve the conflicts, a constraint place is added between two or more conflict tasks 
whenever a same output variable is shared among those tasks (see Fig. 6). The presence of this new 
constraint place allows the mutual exclusion of the conflicting task execution and providing a consistent 
state of the mission net. 
 

 
Fig. 6. Mutual exclusive and conflict-free mission control Petri Net 
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3 Validation experiment framework 
 
The envisioned final validation experiment sets the goal of demonstrating the main advanced capabilities 
in supporting the diver operations through the exploitation of a highly autonomous robotic system. 
With respect to the CADDY framework and provided functionalities, the experiment is composed by the 
following three main phases: 
the robotic system, in guide mode, navigates at constant distance from the diver performing observation 
activity. From the ground station, a new point of interest is fed to the robotic team in order to guide the 
diver to the requested position. Performing the “pointer experiment”, the underwater buddy starts 
guiding the diver towards the selected point; 
the diver stops its motion towards the point and initiates a gesture-based communication with the buddy 
requiring the robot to stop the current guide activity and start a “go to boat and carry equipment” action. 
In this phase the underwater robot will surface and move to a specific base location in order to collect 
some specific equipment unit and then returning at the operational point close to the diver; 
the guide function towards the point of interest is recovered and carried out until the desired location is 
reached by the diver. 
 

 
Given the envisioned experiment plan, the functionalities required are “guide_me” and “go_ and_carry”; 
if needed, two additional primitives can be added to complement the functionality set: “idle” (no action is 
executed) and “emergency” (to trigger the robot to signal a problem or to immediately surface). 
 
The defined primitives are linked to a set of logical tasks that indicates the activation of the related high-
level modules which allow the execution of the required actions. In particular the following tasks are 
selected: 
“go_to_fa” – 2D position tracking in full-actuated configuration; 
“go_to_ua” - 2D position tracking in under-actuated configuration; 
“pointer” – the control scheme to perform the pointer experiment 
“go_to_depth” – automatic control for desired depth maintenance 
“turn_towards” – auto-heading controller 
 
A set of low-level robot tasks are also defined and triggered by the activation of the high-level ones. If 
needed, they can activate specific modules or procedure on-board the actual robot. 
For the specific case, the following robot tasks are defined: “depth_control”, “heading_control”, 
“surge_control”, “sway_control”,” x_control”, “y_control”. 
The activation of the tasks is automatically triggered by the mission control Petri net that, on the basis of 
the requested action, computes the correct sequence of task execution. 
The activation of the primitives can be commanded through the topics: 
 
/buddy/mission_controller/command/<primitive_name> 
 
Setting the value: 0 -> stop  ,  1 -> start 
 
The mission control Petri net computes the task activation sequence and the result is published into the 
following topics (the values are again: 0 -> stop  ,  1 -> start ): 
 
/buddy/mission_controller/primitives/<primitive_name> 
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/buddy/mission_controller/high_level_tasks/<high_level_task_name> 
/buddy/mission_controller/robot_tasks/<robot_task_name> 
 
Proper reference signals have to be generated and consumed by different modules. 
 
“guide_me” mode - A continuous generation of the references for position, orientation and depth for the 
buddy has to be carried out. 
The depth reference will be always the same as the diver depth. 
The position reference of buddy is function of the current diver position & orientation and it is computed 
with respect to the desired point of interest to be reached. 
Orientation reference is computed with respect to the current position of diver, in order to orient buddy 
always to face the diver. 
 
“go_and_carry” mode - A set of action has to be sequentially executed. 

1. Buddy sets position keeping to maintain current 2D position; 
2. Buddy sets autoheading to set a desired orientation; 
3. Buddy sets depth reference to zero and surfaces; 
4. Buddy switches to wifi comm mode in order to maintain connection with MedusaS and 

ground station; 
5. Position reference is changed to “virtual boat” location; 
6. As the “virtual boat” location is reached within a specified threshold, buddy waits for 

a “go back” signal (we can command the action through a specific topic, that can be 
triggered by a timer or by human notification); 

7. Go back to starting 2D position; 
8. As the initial position is reached, “guide_me” mode is triggered and buddy goes to 

correct depth, orientation and position in order to continue the guide operation of the 
diver towards the desired location. 

 
“idle” mode – no action, no references 
“emergency” -  signaling alarm state 
 
In the following, Table 1 resumes the functional modes, running modules, topics published and consumed. 
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Table.1. Modules and topics specification 
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4 Results of the integration workshop 
 
During an integration workshop, carried out in the period 2016 May 16-20 in Zagreb (Croatia), the mission 
controller architecture has been integrated and tested within the surface and underwater control systems 
and the gesture recognition modules. 
 
The integration of the mission controller with the vehicle architectures was focused on the interconnection 
between the logical layer of the mission control module with the execution level of the specific vehicles 
(MedusaS and Buddy) in order to trigger the execution of the specific guidance and control tasks in 
function of the selected functional mode. 
Moreover, having two separate mission controllers running onboard the surface and underwater 
platforms, a synchronization mechanism has to be provided in such a way to maintain a consistent state 
between the two mission modules. To solve this issue, a suitable latch-logic is coded into the mission 
controller and triggered via specific information dispatch through the communication layer. 
Furthermore, during specific actions like the surfacing of the underwater platform, the acoustic tracking 
behavior of the surface vehicle has to be dynamically changed (e.g. from buddy + diver tracking to diver-
only tracking). Such issue is solved by the mission controller generating proper flags in function of the 
specific functional state. 
 
On the other side, the mission control module of the underwater platform is connected to the gesture 
recognition and interpretation modules. The recognized, interpreted and validated gestures or complex 
sequences are forwarded to the mission controller that in turn activates the proper functional modalities 
to comply with the diver requests. 
 
The overall integration of the mission controller architecture was successfully tested during different 
experiments in pool environment during the integration workshop. 
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5 Conclusions 
 
This deliverable has mainly described the development activity carried out during the WT3.3 and its related 
successful results. 
A flexible and modular mission control architecture has been developed and integrated with different 
robotic platforms. The mission controller is capable of consistently change the set of running tasks in order 
to comply with the online diver requests that are issued via hand gestures. 
The overall framework has been customized and tested in pool environment for the envisioned validation 
experiment scheduled for the next trials. 
 


